A325437 Final digit of primes of the form k^2 + 1.
2, 5, 7, 7, 1, 7, 7, 1, 7, 7, 7, 1, 7, 7, 7, 7, 7, 1, 7, 1, 7, 1, 7, 7, 1, 7, 7, 1, 7, 1, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 1, 7, 1, 7, 7, 7, 1, 1, 7, 7, 7, 1, 7, 1, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 7, 1, 7
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Edmund Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion, Jahresbericht der Deutschen Mathematiker-Vereinigung (1912), Vol. 21, page 208-228, here p. 224.
- Eric Weisstein's World of Mathematics, Landau's Problems., Nr. 4.
- Eric Weisstein's World of Mathematics, Near-Square Prime.
Programs
-
Maple
seq(k mod 10,k=select(isprime,[2,seq(4*i^2+1,i=1..10000)]));
-
Mathematica
Mod[#,10]&/@Select[Range[1000]^2+1,PrimeQ] (* Harvey P. Dale, Jul 05 2023 *)
-
PARI
lista(nn) = {forprime(p=2, nn, if (issquare(p-1), print1(p % 10, ", ")););} \\ Michel Marcus, May 07 2019
Formula
a(n) = A002496(n) mod 10.
Comments