A325481 Number of colored set partitions of [2n] where colors of the elements of subsets are distinct and in increasing order and exactly n colors are used.
1, 1, 41, 8020, 4396189, 5226876501, 11581358373398, 43225961160925257, 252807246693691825421, 2194141947654736889023357, 27084992620572948369385642201, 459597167193175440533390098112664, 10424556988338412210154331381461375830
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..151
Crossrefs
Cf. A322670.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) end: a:= n-> add(b(2*n, n-i)*(-1)^i*binomial(n, i), i=0..n): seq(a(n), n=0..14);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]]; a[n_] := Sum[b[2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}]; a /@ Range[0, 14] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Formula
a(n) = A322670(2n,n).