A325513 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all strict integer partitions of n.
1, 2, 2, 8, 8, 32, 144, 432, 2160, 27000, 582120, 7623000, 336936600, 6740402760, 543454231320, 57619849046760, 4683793138766280, 412882704970215480, 88171665744392750520, 12780536107937124847320, 2685589660883755945879560, 942036670625665177379096280
Offset: 0
Keywords
Examples
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), so a(6) = prime(1)^4*prime(2)^2 = 144. The sequence of terms together with their prime indices begins: 1: {} 2: {1} 2: {1} 8: {1,1,1} 8: {1,1,1} 32: {1,1,1,1,1} 144: {1,1,1,1,2,2} 432: {1,1,1,1,2,2,2} 2160: {1,1,1,1,2,2,2,3} 27000: {1,1,1,2,2,2,3,3,3} 582120: {1,1,1,2,2,2,3,4,4,5} 7623000: {1,1,1,2,2,3,3,3,4,5,5} 336936600: {1,1,1,2,2,3,3,4,5,5,6,7} 6740402760: {1,1,1,2,2,3,4,4,4,6,6,7,8} 543454231320: {1,1,1,2,2,3,4,4,5,6,7,8,9,10} 57619849046760: {1,1,1,2,2,3,4,5,5,6,8,9,10,11,12}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..172
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>(i*(i+1)/2), 0, `if`(n=0, [1, 0], b(n, i-1)+ (p-> p+[0, p[1]*x^i])(b(n-i, min(n-i, i-1))))) end: a:= n-> (p-> mul((c-> `if`(c=0, 1, ithprime(c)))( coeff(p, x, i)), i=1..degree(p)))(b(n$2)[2]): seq(a(n), n=0..21); # Alois P. Heinz, Feb 23 2024
-
Mathematica
Table[Times@@Prime/@Length/@Split[Sort[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]]],{n,0,15}]
Comments