A325535 Number of inseparable partitions of n; see Comments.
0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 16, 19, 28, 35, 48, 60, 79, 99, 131, 161, 205, 256, 324, 397, 498, 609, 755, 921, 1131, 1372, 1677, 2022, 2452, 2952, 3561, 4260, 5116, 6102, 7291, 8667, 10309, 12210, 14477, 17087, 20177, 23752, 27957, 32804, 38496, 45049, 52704
Offset: 0
Examples
For n=5, the partition 1+2+2 is separable as 2+1+2, and 2+1+1+1 is inseparable. From _Gus Wiseman_, Jun 27 2020: (Start) The a(2) = 2 through a(9) = 11 inseparable partitions: 11 111 22 2111 33 2221 44 333 1111 11111 222 4111 2222 3222 3111 31111 5111 6111 21111 211111 41111 22221 111111 1111111 221111 51111 311111 321111 2111111 411111 11111111 2211111 3111111 21111111 111111111 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
The Heinz numbers of these partitions are given by A335448.
Strict partitions are counted by A000009 and are all separable.
Anti-run compositions are counted by A003242.
Anti-run patterns are counted by A005649.
Partitions whose differences are an anti-run are A238424.
Separable partitions are counted by A325534.
Anti-run compositions are ranked by A333489.
Anti-run permutations of prime indices are counted by A335452.
Programs
-
Mathematica
u=Table[Length[Select[Map[Quotient[(1 + Length[#]), Max[Map[Length, Split[#]]]] &, IntegerPartitions[nn]], # > 1 &]], {nn, 50}] Table[PartitionsP[n] - u[[n]], {n, 1, Length[u]}] (* Peter J. C. Moses, May 07 2019 *) Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,10}] (* Gus Wiseman, Jun 27 2020 *)
-
PARI
seq(n) = {Vec(sum(k=1, (n+1)\2, x^(2*k-1)*(1 + x - x^(k-1))/((1-x^(k+1))*prod(j=1, k-1, 1 - x^j, 1 + O(x^(n-2*k+2)))), O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Jan 17 2024
Formula
a(n) = Sum_{k>=1} x^(2*k-1)*(1 + x - x^(k-1))/((1-x^(k+1))*Product_{j=1..k-1} (1 - x^j)). - Andrew Howroyd, Jan 17 2024
Extensions
a(0)=0 prepended by Andrew Howroyd, Jan 31 2024
Comments