A325546 Number of compositions of n with weakly increasing differences.
1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 19 compositions: (1) (2) (3) (4) (5) (6) (11) (12) (13) (14) (15) (21) (22) (23) (24) (111) (31) (32) (33) (112) (41) (42) (211) (113) (51) (1111) (212) (114) (311) (123) (1112) (213) (2111) (222) (11111) (312) (321) (411) (1113) (2112) (3111) (11112) (21111) (111111)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Differences[#]&]],{n,0,15}]
-
PARI
\\ Row sums of R(n) give A007294 (=breakdown by width). R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)} seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w]))); x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019
Extensions
More terms from Alois P. Heinz, May 11 2019
Comments