A325550 Number of necklace compositions of n with distinct multiplicities.
1, 2, 2, 4, 5, 7, 11, 16, 18, 41, 86, 118, 273, 465, 731, 1432, 2791, 4063, 8429, 14761, 29465, 58654, 123799, 227419, 453229, 861909, 1697645, 3192807, 6315007, 11718879, 22795272, 42965245, 83615516, 156215020, 306561088, 587300503, 1140650287, 2203107028
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 16 necklace compositions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (113) (33) (115) (44) (112) (122) (114) (133) (116) (1111) (1112) (222) (223) (224) (11111) (1113) (1114) (233) (11112) (1222) (1115) (111111) (11113) (2222) (11122) (11114) (11212) (11222) (111112) (12122) (1111111) (111113) (111122) (111212) (112112) (1111112) (11111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Length/@Split[Sort[#]]&]],{n,15}]
-
PARI
b(n)={((r,k,b,w)->if(!k||!r, if(r,0,(w-1)!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<
Andrew Howroyd, Aug 31 2019
Formula
a(n) = Sum_{d|n} phi(d)*(Sum_{k=1..n/d} A242887(n/d, k)/k)/d. - Andrew Howroyd, Aug 31 2019
Extensions
Terms a(26) and beyond from Andrew Howroyd, Aug 31 2019
Comments