A325557 Number of compositions of n with equal differences up to sign.
1, 1, 2, 4, 6, 8, 13, 12, 20, 24, 25, 29, 49, 40, 50, 64, 86, 80, 105, 102, 164, 175, 186, 208, 325, 316, 382, 476, 624, 660, 814, 961, 1331, 1500, 1739, 2140, 2877, 3274, 3939, 4901, 6345, 7448, 9054, 11157, 14315, 17181, 20769, 25843, 32947, 39639, 48257, 60075
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 20 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (12) (13) (14) (15) (16) (17) (21) (22) (23) (24) (25) (26) (111) (31) (32) (33) (34) (35) (121) (41) (42) (43) (44) (1111) (131) (51) (52) (53) (212) (123) (61) (62) (11111) (141) (151) (71) (222) (232) (161) (321) (313) (242) (1212) (12121) (323) (2121) (1111111) (1232) (111111) (1313) (2123) (2222) (2321) (3131) (3212) (21212) (11111111)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Abs[Differences[#]]&]],{n,0,15}]
-
PARI
step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )} w(n,s)={my(R=matid(n), t=0); while(R, R=step(R,n,s); t+=vecsum(R[n,])); t} a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ Andrew Howroyd, Aug 22 2019
Extensions
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019
Comments