A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14, 11, 10, 9, 10, 12, 10, 15, 14, 11, 10
Offset: 1
Keywords
Examples
The initial terms count the following partitions: 1: (1) 2: (2) 3: (3) 4: (4) 4: (2,2) 5: (5) 6: (6) 6: (3,3) 7: (7) 8: (8) 8: (4,4) 9: (9) 9: (5,4) 9: (3,3,3) 10: (10) 10: (5,5) 11: (11) 11: (4,4,3) 11: (3,3,3,2) 12: (12) 12: (6,6) 12: (4,4,4)
Crossrefs
Programs
-
Maple
f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc: map(f, [$1..70]); # Robert Israel, May 09 2024
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}]
-
PARI
a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ Jinyuan Wang, Feb 25 2025
Extensions
a(61)-a(70) from Robert Israel, May 09 2024
a(71)-a(80) from Jinyuan Wang, Feb 25 2025
Comments