cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325653 a(n) = the product of numbers k such that sigma(k) = sigma(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 66, 7, 8, 9, 170, 66, 12, 13, 4830, 4830, 400, 170, 18, 19, 21320, 651, 22, 4830, 53808, 400, 21320, 27, 1092, 29, 274833900, 651, 32, 54285, 1802, 54285, 36, 37, 53808, 1092, 206480, 21320, 13835052, 43, 237380, 45, 274833900, 54285, 3600, 49
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2019

Keywords

Examples

			a(6) = 66 because sigma(6) = sigma(11) = 12; 6 * 11 = 66.
		

Crossrefs

See A070242 and A325652 for number and sum of such numbers k.

Programs

  • Magma
    [&*[k: k in[1..10000] | SumOfDivisors(k) eq SumOfDivisors(n)]: n in [1..100]];
    
  • Maple
    N:= 1000: # to get a(n) before the first n with sigma(n) > N
    S:= map(numtheory:-sigma, [$1..N-1]):
    m:=min(select(t -> S[t]>N, [$1..N-1]))-1:
    seq(convert(select(s -> S[s]=S[n], [$1..S[n]-1]),`*`), n=1..m); # Robert Israel, Jul 04 2019
  • Mathematica
    a[n_] := Block[{s = DivisorSigma[1, n]}, Product[Which[s == DivisorSigma[1, k], k, True, 1], {k, s}]]; Array[a, 49] (* Giovanni Resta, Jul 03 2019 *)
  • PARI
    a(n) = {my(s=sigma(n)); prod(k=1, s, if ((sigma(k)==s), k, 1));} \\ Michel Marcus, May 12 2019