A325679 Number of compositions of n such that every restriction to a circular subinterval has a different sum.
1, 1, 1, 3, 3, 5, 5, 13, 13, 27, 21, 41, 41, 77, 63, 143, 129, 241, 203, 385, 347, 617, 491, 947, 835, 1445, 1185, 2511, 1991, 3585, 2915, 5411, 4569, 8063, 6321, 11131, 10133, 16465, 13207, 23817, 20133, 33929, 26663, 48357, 41363, 69605, 54363, 95727, 81183, 132257, 106581
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (12) (13) (14) (15) (16) (17) (21) (31) (23) (24) (25) (26) (32) (42) (34) (35) (41) (51) (43) (53) (52) (62) (61) (71) (124) (125) (142) (152) (214) (215) (241) (251) (412) (512) (421) (521)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..80
Crossrefs
Programs
-
Mathematica
suball[q_]:=Join[Take[q,#]&/@Select[Tuples[Range[Length[q]],2],OrderedQ],Drop[q,#]&/@Select[Tuples[Range[2,Length[q]-1],2],OrderedQ]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@suball[#]&]],{n,0,15}]
-
PARI
a(n)={ my(recurse(k,b,w)= if(k >= n, 1, b+=1<
Andrew Howroyd, Mar 24 2025
Extensions
a(21) onwards from Andrew Howroyd, Mar 24 2025
Comments