cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A143823 Number of subsets {x(1),x(2),...,x(k)} of {1,2,...,n} such that all differences |x(i)-x(j)| are distinct.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 36, 57, 91, 140, 216, 317, 463, 668, 962, 1359, 1919, 2666, 3694, 5035, 6845, 9188, 12366, 16417, 21787, 28708, 37722, 49083, 63921, 82640, 106722, 136675, 174895, 222558, 283108, 357727, 451575, 567536, 712856, 890405, 1112081, 1382416, 1717540
Offset: 0

Views

Author

John W. Layman, Sep 02 2008

Keywords

Comments

When the set {x(1),x(2),...,x(k)} satisfies the property that all differences |x(i)-x(j)| are distinct (or alternately, all the sums are distinct), then it is called a Sidon set. So this sequence is basically the number of Sidon subsets of {1,2,...,n}. - Sayan Dutta, Feb 15 2024
See A143824 for sizes of the largest subsets of {1,2,...,n} with the desired property.
Also the number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum. - Gus Wiseman, Jun 07 2019

Examples

			{1,2,4} is a subset of {1,2,3,4}, with distinct differences 2-1=1, 4-1=3, 4-2=2 between pairs of elements, so {1,2,4} is counted as one of the 13 subsets of {1,2,3,4} with the desired property.  Only 2^4-13=3 subsets of {1,2,3,4} do not have this property: {1,2,3}, {2,3,4}, {1,2,3,4}.
From _Gus Wiseman_, May 17 2019: (Start)
The a(0) = 1 through a(5) = 22 subsets:
  {}  {}   {}     {}     {}       {}
      {1}  {1}    {1}    {1}      {1}
           {2}    {2}    {2}      {2}
           {1,2}  {3}    {3}      {3}
                  {1,2}  {4}      {4}
                  {1,3}  {1,2}    {5}
                  {2,3}  {1,3}    {1,2}
                         {1,4}    {1,3}
                         {2,3}    {1,4}
                         {2,4}    {1,5}
                         {3,4}    {2,3}
                         {1,2,4}  {2,4}
                         {1,3,4}  {2,5}
                                  {3,4}
                                  {3,5}
                                  {4,5}
                                  {1,2,4}
                                  {1,2,5}
                                  {1,3,4}
                                  {1,4,5}
                                  {2,3,5}
                                  {2,4,5}
(End)
		

Crossrefs

First differences are A308251.
Second differences are A169942.
Row sums of A381476.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Maple
    b:= proc(n, s) local sn, m;
          if n<1 then 1
        else sn:= [s[], n];
             m:= nops(sn);
             `if`(m*(m-1)/2 = nops(({seq(seq(sn[i]-sn[j],
               j=i+1..m), i=1..m-1)})), b(n-1, sn), 0) +b(n-1, s)
          fi
        end:
    a:= proc(n) option remember;
           b(n-1, [n]) +`if`(n=0, 0, a(n-1))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 14 2011
  • Mathematica
    b[n_, s_] := Module[{ sn, m}, If[n<1, 1, sn = Append[s, n]; m = Length[sn]; If[m*(m-1)/2 == Length[Table[sn[[i]] - sn[[j]], {i, 1, m-1}, {j, i+1, m}] // Flatten // Union], b[n-1, sn], 0] + b[n-1, s]]]; a[n_] := a[n] = b[n - 1, {n}] + If[n == 0, 0, a[n-1]]; Table [a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 08 2015, after Alois P. Heinz *)
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Abs[Subtract@@@Subsets[#,{2}]]&]],{n,0,15}] (* Gus Wiseman, May 17 2019 *)
  • Python
    from itertools import combinations
    def is_sidon_set(s):
        allsums = []
        for i in range(len(s)):
            for j in range(i, len(s)):
                allsums.append(s[i] + s[j])
        if len(allsums)==len(set(allsums)):
            return True
        return False
    def a(n):
        sidon_count = 0
        for r in range(n + 1):
            subsets = combinations(range(1, n + 1), r)
            for subset in subsets:
                if is_sidon_set(subset):
                    sidon_count += 1
        return sidon_count
    print([a(n) for n in range(20)]) # Sayan Dutta, Feb 15 2024
    
  • Python
    from functools import cache
    def b(n, s):
        if n < 1: return 1
        sn = s + [n]
        m = len(sn)
        return (b(n-1, sn) if m*(m-1)//2 == len(set(sn[i]-sn[j] for i in range(m-1) for j in range(i+1, m))) else 0) + b(n-1, s)
    @cache
    def a(n): return b(n-1, [n]) + (0 if n==0 else a(n-1))
    print([a(n) for n in range(31)]) # Michael S. Branicky, Feb 15 2024 after Alois P. Heinz

Formula

a(n) = A169947(n-1) + n + 1 for n>=2. - Nathaniel Johnston, Nov 12 2010
a(n) = A054578(n) + 1 for n>0. - Alois P. Heinz, Jan 17 2013

Extensions

a(21)-a(29) from Nathaniel Johnston, Nov 12 2010
Corrected a(21)-a(29) and more terms from Alois P. Heinz, Sep 14 2011

A169942 Number of Golomb rulers of length n.

Original entry on oeis.org

1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012
Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019

Examples

			For n=2, there is one Golomb Ruler: {0,2}.  For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - _Tomas Boothby_, May 15 2012
From _Gus Wiseman_, May 16 2019: (Start)
The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
            (12)  (13)  (14)  (15)   (16)   (17)
            (21)  (31)  (23)  (24)   (25)   (26)
                        (32)  (42)   (34)   (35)
                        (41)  (51)   (43)   (53)
                              (132)  (52)   (62)
                              (231)  (61)   (71)
                                     (124)  (125)
                                     (142)  (143)
                                     (214)  (152)
                                     (241)  (215)
                                     (412)  (251)
                                     (421)  (341)
                                            (512)
                                            (521)
(End)
		

Crossrefs

Related to thickness: A169940-A169954, A061909.
Related to Golomb rulers: A036501, A054578, A143823.
Row sums of A325677.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,15}] (* Gus Wiseman, May 16 2019 *)
  • Sage
    def A169942(n):
        R = QQ['x']
        return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
    [A169942(n) for n in range(1,8)]
    # Tomas Boothby, May 15 2012

Formula

a(n) = A169952(n) - A169952(n-1) for n>1. - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012

A325683 Number of maximal Golomb rulers of length n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 2, 6, 8, 18, 16, 24, 20, 28, 42, 76, 100, 138, 168, 204, 194, 272, 276, 450, 588, 808, 992, 1578, 1612, 1998, 2166, 2680, 2732, 3834, 3910, 5716, 6818, 9450, 10524, 15504, 16640, 22268, 23754, 30430, 31498, 40644, 40294, 52442, 56344, 72972, 77184
Offset: 0

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A Golomb ruler of length n is a subset of {0..n} containing 0 and n and such that every pair of distinct terms has a different difference up to sign.
Also the number of minimal (most refined) compositions of n such that every restriction to a subinterval has a different sum.

Examples

			The a(1) = 1 through a(8) = 8 maximal Golomb rulers:
  {0,1}  {0,2}  {0,1,3}  {0,1,4}  {0,1,5}  {0,1,4,6}  {0,1,3,7}  {0,1,3,8}
                {0,2,3}  {0,3,4}  {0,2,5}  {0,2,5,6}  {0,1,5,7}  {0,1,5,8}
                                  {0,3,5}             {0,2,3,7}  {0,1,6,8}
                                  {0,4,5}             {0,2,6,7}  {0,2,3,8}
                                                      {0,4,5,7}  {0,2,7,8}
                                                      {0,4,6,7}  {0,3,7,8}
                                                                 {0,5,6,8}
                                                                 {0,5,7,8}
The a(1) = 1 through a(10) = 16 minimal compositions:
  (1)  (2)  (12)  (13)  (14)  (132)  (124)  (125)  (126)  (127)
            (21)  (31)  (23)  (231)  (142)  (143)  (135)  (136)
                        (32)         (214)  (152)  (153)  (154)
                        (41)         (241)  (215)  (162)  (163)
                                     (412)  (251)  (216)  (172)
                                     (421)  (341)  (234)  (217)
                                            (512)  (243)  (253)
                                            (521)  (261)  (271)
                                                   (315)  (316)
                                                   (324)  (352)
                                                   (342)  (361)
                                                   (351)  (451)
                                                   (423)  (613)
                                                   (432)  (631)
                                                   (513)  (712)
                                                   (531)  (721)
                                                   (612)
                                                   (621)
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Accumulate/@Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]]],{n,0,15}]

Extensions

a(21)-a(50) from Fausto A. C. Cariboni, Feb 22 2022

A325677 Irregular triangle read by rows where T(n,k) is the number of Golomb rulers of length n with k + 1 marks, k > 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 1, 4, 2, 1, 6, 6, 1, 6, 8, 1, 8, 18, 1, 8, 16, 1, 10, 30, 4, 1, 10, 34, 14, 1, 12, 48, 28, 1, 12, 48, 42, 1, 14, 72, 76, 1, 14, 72, 100, 1, 16, 96, 160, 8, 1, 16, 98, 190, 8, 1, 18, 126, 284, 40, 1, 18, 128, 316, 70
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Also the number of length-k compositions of n such that every restriction to a subinterval has a different sum. A composition of n is a finite sequence of positive integers summing to n.

Examples

			Triangle begins:
   1
   1
   1   2
   1   2
   1   4
   1   4   2
   1   6   6
   1   6   8
   1   8  18
   1   8  16
   1  10  30   4
   1  10  34  14
   1  12  48  28
   1  12  48  42
   1  14  72  76
   1  14  72 100
   1  16  96 160   8
   1  16  98 190   8
   1  18 126 284  40
   1  18 128 316  70
Row n = 8 counts the following rulers:
  {0,8}  {0,1,8}  {0,1,3,8}
         {0,2,8}  {0,1,5,8}
         {0,3,8}  {0,1,6,8}
         {0,5,8}  {0,2,3,8}
         {0,6,8}  {0,2,7,8}
         {0,7,8}  {0,3,7,8}
                  {0,5,6,8}
                  {0,5,7,8}
and the following compositions:
  (8)  (17)  (125)
       (26)  (143)
       (35)  (152)
       (53)  (215)
       (62)  (251)
       (71)  (341)
             (512)
             (521)
		

Crossrefs

Row sums are A169942.
Row lengths are A325678(n) = A143824(n + 1) - 1.
Column k = 2 is A052928.
Column k = 3 is A325686.
Rightmost column is A325683.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,15},{k,n}],0,{2}]

A325678 Maximum length of a composition of n such that every restriction to a subinterval has a different sum.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also the maximum number of nonzero marks on a Golomb ruler of length n.

Crossrefs

Programs

  • Mathematica
    Table[Max[Length/@Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,0,15}]

Formula

a(n) + 1 = A143824(n + 1).

A325789 Number of perfect necklace compositions of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 22 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. A circular subsequence is a sequence of consecutive terms where the last and first parts are also considered consecutive. A necklace composition of n is perfect if every positive integer from 1 to n is the sum of exactly one distinct circular subsequence.

Examples

			The a(1) = 1 , a(2) = 1, a(3) = 2, a(7) = 3, a(13) = 5, and a(31) = 11 perfect necklace compositions (A = 10, B = 11, C = 12, D = 13, E = 14):
  1  11  12   124      1264           12546D
         111  142      1327           1274C5
              1111111  1462           13278A
                       1723           13625E
                       1111111111111  15C472
                                      17324E
                                      1A8723
                                      1D6452
                                      1E4237
                                      1E5263
                                      1111111111111111111111111111111
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&Sort[Total/@subalt[#]]==Range[n]&]],{n,10}]

Formula

For n > 1, a(n) = A325787(n) + 1.

A325681 Number of necklace compositions of n such that every restriction to a circular subinterval has a different sum.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 11, 9, 16, 16, 27, 23, 46, 42, 73, 63, 112, 102, 173, 141, 254, 228, 373, 313, 614, 500, 855, 709, 1252, 1074, 1827, 1457, 2470, 2260, 3559, 2905, 5044, 4294, 6997, 5623, 9752, 8422, 13741, 10913, 18562, 15912, 25213, 20569, 35146, 29286, 46307, 38241, 61396
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
A circular subinterval is a sequence of consecutive indices where the first and last indices are also considered consecutive.

Examples

			The a(1) = 1 through a(10) = 9 necklace compositions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)
            (12)  (13)  (14)  (15)  (16)   (17)   (18)   (19)
                        (23)  (24)  (25)   (26)   (27)   (28)
                                    (34)   (35)   (36)   (37)
                                    (124)  (125)  (45)   (46)
                                    (142)  (152)  (126)  (127)
                                                  (135)  (136)
                                                  (153)  (163)
                                                  (162)  (172)
                                                  (234)
                                                  (243)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    suball[q_]:=Join[Take[q,#]&/@Select[Tuples[Range[Length[q]],2],OrderedQ],Drop[q,#]&/@Select[Tuples[Range[2,Length[q]-1],2],OrderedQ]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Total/@suball[#]&]],{n,15}]
  • PARI
    a(n)={
       my(recurse(k,r,b,w)=
          if(k >= n, 1/r,
             b+=1<Andrew Howroyd, Mar 25 2025

Extensions

a(21) onwards from Andrew Howroyd, Mar 24 2025

A382399 Number of subsets of Z_n such that every ordered pair of distinct elements has a different difference.

Original entry on oeis.org

1, 2, 3, 7, 9, 16, 19, 43, 49, 100, 91, 177, 193, 352, 323, 691, 673, 1242, 1135, 2129, 2041, 3634, 3103, 5843, 5473, 9326, 8139, 16579, 14001, 24796, 21271, 38813, 34369, 60292, 49539, 86451, 81361, 131684, 110391, 196717, 171761, 286878, 236167, 419337, 370569, 618346, 501999, 872415, 763777, 1235438, 1028451
Offset: 0

Views

Author

Andrew Howroyd, Mar 24 2025

Keywords

Comments

Arithmetic is done modulo n.
Also the number of subsets of Z_n such that every unordered pair of (not necessarily distinct) elements has a different sum.

Examples

			The a(0) = 1 through a(5) = 16 subsets:
  {}  {}   {}     {}     {}       {}
      {0}  {0}    {0}    {0}      {0}
           {1}    {1}    {1}      {1}
                  {2}    {2}      {2}
                  {0,1}  {3}      {3}
                  {0,2}  {0,1}    {4}
                  {1,2}  {0,3}    {0,1}
                         {1,2}    {0,2}
                         {2,3}    {0,3}
                                  {0,4}
                                  {1,2}
                                  {1,3}
                                  {1,4}
                                  {2,3}
                                  {2,4}
                                  {3,4}
		

Crossrefs

Programs

  • PARI
    a(n)={
       my(recurse(k,r,b,w)=
          if(k >= n, 1,
             b+=1<
    				

Formula

a(n) = n*A325681(n) + 1.
Showing 1-8 of 8 results.