A325695 Number of length-3 strict integer partitions of n such that the largest part is not the sum of the other two.
0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 2, 5, 5, 8, 7, 12, 11, 16, 15, 21, 20, 27, 25, 33, 32, 40, 38, 48, 46, 56, 54, 65, 63, 75, 72, 85, 83, 96, 93, 108, 105, 120, 117, 133, 130, 147, 143, 161, 158, 176, 172, 192, 188, 208, 204, 225, 221, 243, 238, 261, 257, 280, 275
Offset: 0
Keywords
Examples
The a(7) = 1 through a(15) = 12 partitions (A = 10, B = 11, C = 12): (421) (521) (432) (631) (542) (543) (643) (653) (654) (531) (721) (632) (732) (652) (842) (753) (621) (641) (741) (742) (851) (762) (731) (831) (751) (932) (843) (821) (921) (832) (941) (852) (841) (A31) (861) (931) (B21) (942) (A21) (951) (A32) (A41) (B31) (C21)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]
Formula
Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9.
(End)
a(n) = A325696(n)/6. - Alois P. Heinz, Jun 18 2020