A325696 Number of length-3 strict compositions of n such that no part is the sum of the other two.
0, 0, 0, 0, 0, 0, 0, 6, 6, 18, 12, 30, 30, 48, 42, 72, 66, 96, 90, 126, 120, 162, 150, 198, 192, 240, 228, 288, 276, 336, 324, 390, 378, 450, 432, 510, 498, 576, 558, 648, 630, 720, 702, 798, 780, 882, 858, 966, 948, 1056, 1032, 1152, 1128, 1248, 1224, 1350
Offset: 0
Keywords
Examples
The a(6) = 6 through a(10) = 12 compositions: (124) (125) (126) (127) (142) (152) (135) (136) (214) (215) (153) (163) (241) (251) (162) (172) (412) (512) (216) (217) (421) (521) (234) (271) (243) (316) (261) (361) (315) (613) (324) (631) (342) (712) (351) (721) (423) (432) (513) (531) (612) (621)
Crossrefs
Programs
-
Mathematica
Table[Length[Cases[Join@@Permutations/@IntegerPartitions[n,{3}],{x_,y_,z_}/;x!=y!=z&&x+y!=z&&x!=y+z&&y!=x+z]],{n,0,30}]
Formula
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: 6*x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9.
(End)
a(n) = 6 * A325695(n). - Alois P. Heinz, Jun 18 2020
Comments