cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A333224 Number of distinct positive consecutive subsequence-sums of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 4, 3, 4, 4, 4, 1, 3, 3, 5, 3, 5, 4, 5, 3, 4, 5, 5, 5, 5, 5, 5, 1, 3, 3, 5, 2, 5, 5, 6, 3, 6, 3, 6, 5, 6, 5, 6, 3, 4, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 7, 4, 6, 6, 7, 3, 6, 4, 7, 5, 7, 6
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The composition (4,3,1,2) has positive subsequence-sums 1, 2, 3, 4, 6, 7, 8, 10, so a(550) = 8.
		

Crossrefs

Dominated by A124770.
Compositions where every subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702.
Strict knapsack partitions are counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.
Allowing empty subsequences gives A333257.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>Plus[s]]]],{n,0,100}]

Formula

a(n) = A333257(n) - 1.

A333257 Number of distinct consecutive subsequence-sums of the k-th composition in standard order.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 5, 4, 5, 5, 5, 2, 4, 4, 6, 4, 6, 5, 6, 4, 5, 6, 6, 6, 6, 6, 6, 2, 4, 4, 6, 3, 6, 6, 7, 4, 7, 4, 7, 6, 7, 6, 7, 4, 5, 7, 7, 6, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 2, 4, 4, 6, 4, 7, 7, 8, 4, 6, 6, 8, 5, 7, 7, 8, 4, 7, 5, 8, 6, 8, 7
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The ninth composition in standard order is (3,1), which has consecutive subsequences (), (1), (3), (3,1), with sums 0, 1, 3, 4, so a(9) = 4.
		

Crossrefs

Dominated by A124771.
Compositions where every subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222, while the case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223.
The version for Heinz numbers of partitions is A325770.
Not allowing empty subsequences gives A333224.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s___,_}:>Plus[s]]]],{n,0,100}]

Formula

a(n) = A333224(n) + 1.

A333223 Numbers k such that every distinct consecutive subsequence of the k-th composition in standard order has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 36, 40, 41, 42, 48, 50, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 81, 84, 85, 88, 96, 98, 100, 104, 106, 112, 120, 127, 128, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()            21: (2,2,1)           65: (6,1)
    1: (1)           24: (1,4)             66: (5,2)
    2: (2)           26: (1,2,2)           67: (5,1,1)
    3: (1,1)         28: (1,1,3)           68: (4,3)
    4: (3)           31: (1,1,1,1,1)       69: (4,2,1)
    5: (2,1)         32: (6)               70: (4,1,2)
    6: (1,2)         33: (5,1)             71: (4,1,1,1)
    7: (1,1,1)       34: (4,2)             72: (3,4)
    8: (4)           35: (4,1,1)           73: (3,3,1)
    9: (3,1)         36: (3,3)             74: (3,2,2)
   10: (2,2)         40: (2,4)             80: (2,5)
   12: (1,3)         41: (2,3,1)           81: (2,4,1)
   15: (1,1,1,1)     42: (2,2,2)           84: (2,2,3)
   16: (5)           48: (1,5)             85: (2,2,2,1)
   17: (4,1)         50: (1,3,2)           88: (2,1,4)
   18: (3,2)         56: (1,1,4)           96: (1,6)
   19: (3,1,1)       63: (1,1,1,1,1,1)     98: (1,4,2)
   20: (2,3)         64: (7)              100: (1,3,3)
		

Crossrefs

Distinct subsequences are counted by A124770 and A124771.
A superset of A333222, counted by A169942, with partition case A325768.
These compositions are counted by A325676.
A version for partitions is A325769, with Heinz numbers A325778.
The number of distinct positive subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Numbers whose binary indices are a strict knapsack partition are A059519.
Knapsack partitions are counted by A108917, with strict case A275972.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union[ReplaceList[stc[#],{_,s__,_}:>{s}]]&]

A333222 Numbers k such that every restriction of the k-th composition in standard order to a subinterval has a different sum.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 24, 32, 33, 34, 40, 41, 48, 50, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 129, 130, 132, 133, 134, 144, 145, 160, 161, 176, 192, 194, 196, 208, 256, 257, 258, 260, 261, 262, 264, 265, 268, 272, 274
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

Also numbers whose binary indices together with 0 define a Golomb ruler.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()        41: (2,3,1)    130: (6,2)      262: (6,1,2)
    1: (1)       48: (1,5)      132: (5,3)      264: (5,4)
    2: (2)       50: (1,3,2)    133: (5,2,1)    265: (5,3,1)
    4: (3)       64: (7)        134: (5,1,2)    268: (5,1,3)
    5: (2,1)     65: (6,1)      144: (3,5)      272: (4,5)
    6: (1,2)     66: (5,2)      145: (3,4,1)    274: (4,3,2)
    8: (4)       68: (4,3)      160: (2,6)      276: (4,2,3)
    9: (3,1)     69: (4,2,1)    161: (2,5,1)    288: (3,6)
   12: (1,3)     70: (4,1,2)    176: (2,1,5)    289: (3,5,1)
   16: (5)       72: (3,4)      192: (1,7)      290: (3,4,2)
   17: (4,1)     80: (2,5)      194: (1,5,2)    296: (3,2,4)
   18: (3,2)     81: (2,4,1)    196: (1,4,3)    304: (3,1,5)
   20: (2,3)     88: (2,1,4)    208: (1,2,5)    320: (2,7)
   24: (1,4)     96: (1,6)      256: (9)        321: (2,6,1)
   32: (6)       98: (1,4,2)    257: (8,1)      324: (2,4,3)
   33: (5,1)    104: (1,2,4)    258: (7,2)      328: (2,3,4)
   34: (4,2)    128: (8)        260: (6,3)      352: (2,1,6)
   40: (2,4)    129: (7,1)      261: (6,2,1)    384: (1,8)
		

Crossrefs

A subset of A233564.
Also a subset of A333223.
These compositions are counted by A169942 and A325677.
The number of distinct nonzero subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Lengths of optimal Golomb rulers are A003022.
Inequivalent optimal Golomb rulers are counted by A036501.
Complete rulers are A103295, with perfect case A103300.
Knapsack partitions are counted by A108917, with strict case A275972.
Distinct subsequences are counted by A124770 and A124771.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Knapsack compositions are counted by A325676.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,300],UnsameQ@@ReplaceList[stc[#],{_,s__,_}:>Plus[s]]&]

A325768 Number of integer partitions of n for which every restriction to a subinterval has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 12, 15, 15, 23, 22, 29, 32, 40, 42, 55, 56, 71, 75, 92, 100, 124, 128, 152, 167, 198, 212, 255, 269, 315, 343, 392, 428, 501, 529, 615, 665, 757, 812, 937, 1002, 1142, 1238, 1385, 1490, 1701, 1808, 2038, 2200, 2476
Offset: 0

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

Also the number of Golomb rulers of length n whose consecutive marks are separated by weakly decreasing distances.
The Heinz numbers of these partitions are given by A325779.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)
                        (41)  (51)  (52)   (62)   (63)
                                    (61)   (71)   (72)
                                    (421)  (521)  (81)
                                                  (432)
                                                  (531)
                                                  (621)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,0,30}]

A124770 Number of distinct nonempty subsequences for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 5, 3, 5, 5, 4, 1, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 8, 5, 8, 7, 5, 1, 3, 3, 5, 2, 6, 6, 7, 3, 6, 3, 8, 6, 7, 8, 9, 3, 5, 6, 8, 6, 8, 7, 11, 5, 8, 8, 11, 7, 11, 9, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 9, 5, 9, 9, 9, 3, 6, 5, 9, 5, 7, 8, 11, 6, 9, 8, 11, 9, 11, 11, 11, 3, 5, 6, 8, 5, 9
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; the nonempty subsequences are 1; 2; 1,1; 2,1; 2,1,1; so a(11) = 5.
The table starts:
  0
  1
  1 2
  1 3 3 3
  1 3 2 5 3 5 5 4
  1 3 3 5 3 5 5 7 3 5 5 8 5 8 7 5
From _Gus Wiseman_, Apr 03 2020: (Start)
If the k-th composition in standard order is c, then we say that the STC-number of c is k. The STC-numbers of the distinct subsequences of the composition with STC-number k are given in column k below:
  1  2  1  4  1  1  1  8  1  2   1   1   1   1   1   16  1   2   1   2
        3     2  2  3     4  10  2   4   2   2   3       8   4   4   4
              5  6  7     9      3   12  6   3   7       17  18  3   20
                                 5       5   6   15              9
                                 11      13  14                  19
(End)
		

Crossrefs

Row lengths are A011782.
Allowing empty subsequences gives A124771.
Dominates A333224, the version counting subsequence-sums instead of subsequences.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>{s}]]],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

a(n) = A124771(n) - 1. - Gus Wiseman, Apr 03 2020

A325778 Heinz numbers of integer partitions whose distinct consecutive subsequences have different sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

First differs from A299702 in having 462.
The enumeration of these partitions by sum is given by A325769.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
  12: {1,1,2}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  60: {1,1,2,3}
  63: {2,2,4}
  70: {1,3,4}
  72: {1,1,1,2,2}
  80: {1,1,1,1,3}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{_,s__,_}:>{s}]]&]

A334268 Number of compositions of n where every distinct subsequence (not necessarily contiguous) has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 5, 10, 10, 24, 24, 43, 42, 88, 72, 136, 122, 242, 213, 392, 320, 630, 490, 916, 742, 1432, 1160, 1955, 1604, 2826, 2310, 3850, 2888, 5416, 4426, 7332, 5814, 10046, 7983, 12946, 10236, 17780, 14100, 22674, 17582, 30232, 23674, 37522, 29426, 49832
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The contiguous case is A325676.

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,1,1)  (4,1)        (4,2)
                                  (1,1,3)      (5,1)
                                  (1,2,2)      (1,1,4)
                                  (2,2,1)      (2,2,2)
                                  (3,1,1)      (4,1,1)
                                  (1,1,1,1,1)  (1,1,1,1,1,1)
		

Crossrefs

These compositions are ranked by A334967.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702, while the strict case is counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1, add((h->
          `if`(nops(h)=nops(map(l-> add(i, i=l), h)),
           b(n-j, h), 0))({s[], map(l-> [l[], j], s)[]}), j=1..n))
        end:
    a:= n-> b(n, {[]}):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 03 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15}]

Extensions

a(18)-a(47) from Alois P. Heinz, Jun 03 2020
Showing 1-8 of 8 results.