A325817 a(n) is the least k >= 0 such that n-k and n-(sigma(n)-k) are relatively prime.
0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 27, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 0, 0, 2, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 5, 0, 0, 2, 0, 0, 1, 0, 1, 2
Offset: 1
Keywords
Examples
For n=15, gcd(15-0, 15-(24-0)) = 3, gcd(15-1, 15-(24-1)) = 2 and gcd(15-2, 15-(24-2)) = 1, thus a(15) = 2.
Links
Crossrefs
Programs
-
Mathematica
lk[n_]:=Module[{k=0},While[!CoprimeQ[n-k,n-(DivisorSigma[1,n]-k)],k++];k]; Array[lk,110] (* Harvey P. Dale, Nov 24 2024 *)
-
PARI
A325817(n) = { my(s=sigma(n)); for(k=0, s, if(1==gcd(-n + k, (n-s)+k), return(k))); };
-
PARI
A325817(n) = { my(s=sigma(n)); for(i=0, s, if(1==gcd(n-i, n-(s-i)), return(i))); };
Comments