cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325831 Number of integer partitions of n whose number of submultisets is greater than n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 21, 35, 40, 58, 84, 120, 141, 199, 255, 347, 447, 592, 772, 1006, 1172, 1504, 1928, 2455, 3061, 3859, 4778, 5953, 7054, 8737, 10742, 13193, 15783, 19241, 23412, 28344, 33951, 40911, 49150, 58917, 70482, 84055, 100069, 118914
Offset: 0

Views

Author

Gus Wiseman, May 25 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325795.

Examples

			The a(1) = 1 through a(8) = 10 partitions:
  (1)  (11)  (21)   (211)   (221)    (321)     (421)      (3221)
             (111)  (1111)  (311)    (2211)    (2221)     (3311)
                            (2111)   (3111)    (3211)     (4211)
                            (11111)  (21111)   (4111)     (22211)
                                     (111111)  (22111)    (32111)
                                               (31111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n):
    seq(a(n), n=0..55);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])>n&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
         If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0,
         Function[w, b[w, Min[w, i-1], p/(j+1)]][n-i*j], 0], {j, 0, n/i}]];
    a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n}];
    a /@ Range[0, 55] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A325834(n).
For n even, a(n) = A325832(n) - A325830(n/2); for n odd, a(n) = A325832(n).