A325832 Number of integer partitions of n whose number of submultisets is greater than or equal to n.
1, 1, 2, 2, 3, 4, 6, 8, 13, 16, 22, 35, 50, 58, 85, 120, 162, 199, 267, 347, 462, 592, 773, 1006, 1293, 1504, 1929, 2455, 3081, 3859, 4815, 5953, 7363, 8737, 10743, 13193, 16102, 19241, 23413, 28344, 34260, 40911, 49197, 58917, 70515, 84055, 100070, 118914
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 partitions: (1) (2) (21) (31) (221) (321) (421) (431) (11) (111) (211) (311) (411) (2221) (521) (1111) (2111) (2211) (3211) (3221) (11111) (3111) (4111) (3311) (21111) (22111) (4211) (111111) (31111) (5111) (211111) (22211) (1111111) (32111) (41111) (221111) (311111) (2111111) (11111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) end: a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n-1): seq(a(n), n=0..55); # Alois P. Heinz, Aug 17 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])>=n&]],{n,0,30}] (* Second program: *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function [w, b[w, Min[w, i - 1], p/(j + 1)]][n - i*j], 0], {j, 0, n/i}]]; a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n - 1}]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)
Comments