A325834 Number of integer partitions of n whose number of submultisets is less than or equal to n.
0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 21, 21, 37, 43, 51, 56, 90, 98, 130, 143, 180, 200, 230, 249, 403, 454, 508, 555, 657, 706, 826, 889, 1295, 1406, 1568, 1690, 2194, 2396, 2603, 2841, 3387, 3672, 4024, 4344, 4693, 5079, 5489, 5840, 9731, 10424, 11336, 12093
Offset: 0
Keywords
Examples
The a(2) = 1 through a(9) = 14 partitions: (2) (3) (4) (5) (6) (7) (8) (9) (22) (32) (33) (43) (44) (54) (31) (41) (42) (52) (53) (63) (51) (61) (62) (72) (222) (322) (71) (81) (411) (331) (332) (333) (511) (422) (432) (431) (441) (521) (522) (611) (531) (2222) (621) (5111) (711) (3222) (6111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) end: a:= n-> add(b(n$2, k), k=0..n): seq(a(n), n=0..55); # Alois P. Heinz, Aug 17 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])<=n&]],{n,0,30}] (* Second program: *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function[w, b[w, Min[w, i - 1], Quotient[p, j + 1]]][n - i*j], 0], {j, 0, n/i}]]; a[n_] := Sum[b[n, n, k], {k, 0, n}]; a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Comments