A325836 Number of integer partitions of n having n - 1 different submultisets.
0, 0, 0, 1, 1, 2, 0, 3, 0, 5, 2, 2, 0, 15, 0, 2, 3, 25, 0, 17, 0, 18, 3, 2, 0, 150, 0, 2, 13, 24, 0, 43, 0, 351, 3, 2, 2, 383, 0, 2, 3, 341, 0, 60, 0, 37, 51, 2, 0, 3733, 0, 31, 3, 42, 0, 460, 1, 633, 3, 2, 0, 1780, 0, 2, 68, 12460, 0, 87, 0, 55, 3
Offset: 0
Keywords
Examples
The a(3) = 1 through a(13) = 15 partitions (empty columns not shown): (3) (22) (32) (322) (432) (3322) (32222) (4432) (41) (331) (531) (4411) (71111) (5332) (511) (621) (5422) (3222) (5521) (6111) (6322) (6331) (6511) (7411) (8221) (8311) (9211) (33322) (55111) (322222) (811111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) end: a:= n-> b(n$2,n-1): seq(a(n), n=0..80); # Alois P. Heinz, Aug 17 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==n-1&]],{n,0,30}] (* Second program: *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1); Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]]; a[n_] := b[n, n, n-1]; a /@ Range[0, 80] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
Comments