A325853 Number of integer partitions of n such that every pair of distinct parts has a different quotient.
1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 69, 88, 116, 148, 193, 242, 309, 385, 484, 596, 746, 915, 1128, 1371, 1679, 2030, 2460, 2964, 3570, 4268, 5115, 6088, 7251, 8584, 10175, 12002, 14159, 16619, 19526, 22846, 26713, 31153, 36300, 42169, 48990, 56728
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (221) (51) (61) (1111) (311) (222) (322) (2111) (321) (331) (11111) (411) (511) (2211) (2221) (3111) (3211) (21111) (4111) (111111) (22111) (31111) (211111) (1111111) The one partition of 7 for which not every pair of distinct parts has a different quotient is (4,2,1).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,20}]
Comments