A325872 T(n, k) = [x^k] Sum_{k=0..n} Stirling1(n, k)*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, -2, 1, 0, 7, -6, 1, 0, -35, 40, -12, 1, 0, 228, -315, 130, -20, 1, 0, -1834, 2908, -1485, 320, -30, 1, 0, 17582, -30989, 18508, -5005, 665, -42, 1, 0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 0
Examples
Triangle starts: [0] [1] [1] [0, 1] [2] [0, -2, 1] [3] [0, 7, -6, 1] [4] [0, -35, 40, -12, 1] [5] [0, 228, -315, 130, -20, 1] [6] [0, -1834, 2908, -1485, 320, -30, 1] [7] [0, 17582, -30989, 18508, -5005, 665, -42, 1] [8] [0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1] [9] [0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1]
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, A new set of Sheffer-Bell polynomials and logarithmic numbers, Georgian Mathematical Journal, Feb. 2019, page 8.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
p[n_] := Sum[StirlingS1[n, k] FactorialPower[x, k] , {k, 0, n}]; Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten
-
PARI
T(n, k) = sum(j=k, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 18 2025
-
Sage
def a_row(n): s = sum((-1)^(n-k)*stirling_number1(n,k)*falling_factorial(x,k) for k in (0..n)) return expand(s).list() [a_row(n) for n in (0..9)]
Formula
From Seiichi Manyama, Apr 18 2025: (Start)
T(n,k) = Sum_{j=k..n} Stirling1(n,j) * Stirling1(j,k).
E.g.f. of column k (with leading zeros): f(x)^k / k! with f(x) = log(1 + log(1 + x)). (End)