A325910 a(n) = ( (-1)^(n-1) * Sum_{k=0..n-1} (-1)^k*10^(2^k) - (1-(-1)^n)/2 )/9.
0, 1, 10, 1101, 11110010, 1111111100001101, 11111111111111110000000011110010, 1111111111111111111111111111111100000000000000001111111100001101
Offset: 0
Keywords
Examples
1 = -0 + 1. 10 = -1 + 11. 1101 = -10 + 1111. 11110010 = -1101 + 11111111. 1111111100001101 = -11110010 + 1111111111111111. ================================================ n | (a(n))_2 | A325912(n-1) --+------------------------------+------------- 1 | 1 = 1 | 2 2 | (10)_2 = 2 | 2 3 | (1101)_2 = 13 | 14 4 | (11110010)_2 = 242 | 242 5 | (1111111100001101)_2 = 65293 | 65294
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10
Programs
-
Mathematica
a[n_] := ((-1)^(n - 1) * Sum[(-1)^k * 10^(2^k), {k, 0, n - 1} ] - (1 - (-1)^n)/2)/9; Array[a, 8, 0] (* Amiram Eldar, May 07 2021 *)
-
PARI
{a(n) = ((-1)^(n-1)*sum(k=0, n-1, (-1)^k*10^2^k)-(1-(-1)^n)/2)/9}