cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325915 Total number of colors used in all colored integer partitions of n where all colors from an initial interval of the color palette are used and parts differ by size or by color.

Original entry on oeis.org

0, 1, 3, 9, 25, 67, 176, 453, 1149, 2882, 7161, 17654, 43238, 105303, 255210, 615896, 1480771, 3548313, 8477415, 20199596, 48014369, 113879450, 269555798, 636875077, 1502195104, 3537705916, 8319377813, 19537936874, 45827441193, 107366261405, 251268532266
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    g:= proc(n) option remember; `if`(n=0, [1, 0],
          (p-> p+[0, p[1]])(add(b(j)*g(n-j), j=1..n)))
        end:
    a:= n-> g(n)[2]:
    seq(a(n), n=0..32);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
    g[n_] := g[n] = If[n == 0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[b[j] g[n - j], {j, 1, n}]]];
    a[n_] := g[n][[2]];
    a /@ Range[0, 32] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A308680(n,k).
a(n) ~ c * d^n * n, where d = 2.26562663992642295791262530033324290454663... is the root of the equation QPochhammer[-1, 1/d] = 4 and c = 0.1771510533646387556482103930322780317974659818141571819... - Vaclav Kotesovec, Sep 18 2019