cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325922 Number of Motzkin excursions of length n with an even number of humps and an even number of peaks.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 11, 31, 86, 230, 608, 1588, 4151, 10925, 29083, 78373, 213702, 588366, 1631906, 4550346, 12736029, 35746763, 100561622, 283486702, 800798659, 2266802139, 6429960961, 18276530005, 52051825058, 148520257620, 424507695627
Offset: 0

Views

Author

Andrei Asinowski, Jun 27 2019

Keywords

Comments

A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).

Examples

			For n=3 the a(5)=4 paths are HHHHH, UDUDH, UDHUD, HUDUD.
		

Crossrefs

Cf. A325921.

Programs

  • Mathematica
    CoefficientList[Series[(4 (1 - 2 x + 2 x^2) - Sqrt[(1 - 2 x - 3 x^2) (1 - x)^2] - Sqrt[(1 - x - 4 x^3) (1 - x)^3] - Sqrt[(1 + x^2) (1 - 4 x + 5  x^2)] - Sqrt[(1 - 2 x) (1 - 2 x - x^2) (1 - x^2 + 2 x^3)]) / (8  x^2 (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 30 2019 *)

Formula

G.f.: (4*(1-2*t+2*t^2) - sqrt((1-2*t-3*t^2)*(1-t)^2) - sqrt((1-t-4*t^3)*(1-t)^3) - sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)).
a(n) ~ 3^(n + 3/2) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 03 2019
conjecture: a(n)+A325924(n) = A307557(n). - R. J. Mathar, Jan 25 2023