A325923 Number of Motzkin meanders of length n with an odd number of humps and an even number of peaks.
0, 0, 0, 1, 5, 18, 56, 163, 459, 1286, 3640, 10479, 30659, 90738, 270092, 804833, 2393929, 7098790, 20984188, 61872587, 182130495, 535698422, 1575478728, 4635125097, 13645054833, 40196623234, 118493318904, 349506908369, 1031426887149
Offset: 0
Keywords
Examples
For n = 4 the a(4) = 5 paths are UHDU, UHDH, UUHD, HUHD, UHHD: in all these paths, 0 peaks, 1 hump. For n=0..6 we have only paths with 0 peaks and 1 hump. For n=7, we have a(7)=163. Among them, 160 paths with 0 peaks and 1 hump, and 3 walks with 2 peaks and 3 humps: UDUDUHD, UDUHDUD, UHDUDUD.
Links
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Cf. A325921.
Programs
-
Maple
b:= proc(x, y, t, p, h) option remember; `if`(x=0, `if`(p+1=h, 1, 0), `if`(y>0, b(x-1, y-1, 0, irem(p+`if`(t=1, 1, 0), 2), irem(h+ `if`(t=2, 1, 0), 2)), 0)+b(x-1, y, `if`(t>0, 2, 0), p, h)+ b(x-1, y+1, 1, p, h)) end: a:= n-> b(n, 0$4): seq(a(n), n=0..35); # Alois P. Heinz, Jul 04 2019
-
Mathematica
CoefficientList[Series[((-1 + 4*x - 3*x^2 + Sqrt[(-(-1 + x)^2)*(-1 + 2*x + 3*x^2)])/ (1 - 4*x + 3*x^2) - (-1 + 4*x - 5*x^2 + 2*x^3 + Sqrt[(-1 + x)^3*(-1 + x + 4*x^3)])/ ((-1 + x)^2*(-1 + 2*x)) + (1 - 4*x + 5*x^2 - Sqrt[1 - 4*x + 6*x^2 - 4*x^3 + 5*x^4])/(1 - 4*x + 5*x^2) + (1 - 4*x + 3*x^2 + 2*x^3 - Sqrt[1 - 4*x + 2*x^2 + 8*x^3 - 11*x^4 + 4*x^5 + 4*x^6])/(1 - 4*x + 3*x^2 + 2*x^3)) / (8*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 09 2019 *)
Formula
G.f.: ( (-3*t^2+4*t+sqrt(-3*t^4+4*t^3+2*t^2-4*t+1)-1)/(3*t^2-4*t+1) + (2*t^3-5*t^2+4*t+sqrt(4*t^6-12*t^5+13*t^4-8*t^3+6*t^2-4*t+1)-1)/(-2*t^3+5*t^2-4*t+1) - (-5*t^2+4*t+sqrt(5*t^4-4*t^3+6*t^2-4*t+1)-1)/(5*t^2-4*t+1) - (-2*t^3-3*t^2+4*t+sqrt(4*t^6+4*t^5-11*t^4+8*t^3+2*t^2-4*t+1)-1)/(2*t^3+3*t^2-4*t+1) ) / (8*t).
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2019
Comments