A325928 Number of Motzkin excursions of length n with an odd number of humps and an odd number of peaks.
0, 0, 1, 2, 4, 8, 17, 36, 83, 202, 519, 1382, 3766, 10352, 28551, 78756, 217224, 599542, 1657983, 4598766, 12803044, 35785664, 100412731, 282753476, 798690091, 2262087814, 6421507153, 18265543282, 52047980674, 148554917816, 424656556001, 1215691192244
Offset: 0
Keywords
Examples
For n=4, the a(4)=4 paths are UDHH, HUDH, HHUD, and UUDD (1 hump, 1 peak).
Links
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Motzkin meanders and excursions with parity restrictions on the number of humps and peaks:
A325921: Meanders, #humps=EVEN, #peaks=EVEN.
A325922: Excursions, #humps=EVEN, #peaks=EVEN.
A325923: Meanders, #humps=ODD, #peaks=EVEN.
A325924: Excursions, #humps=ODD, #peaks=EVEN.
A325925: Meanders, #humps=EVEN, #peaks=ODD.
A325926: Excursions, #humps=EVEN, #peaks=ODD.
A325927: Meanders, #humps=ODD, #peaks=ODD.
A325928 (this sequence): Excursions, #humps=ODD, #peaks=ODD.
Programs
-
PARI
seq(n)={my(t='x + O('x*'x^n)); Vec(-1/2 + ( -sqrt((1-t)^2*(1+t)*(1-3*t)) + sqrt((1-2*t)*(1+t+2*t^2)*(1-t)^3) + sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)), -n)} \\ Andrew Howroyd, Aug 12 2019
Formula
G.f.: -1/2 + ( -sqrt((1-t)^2*(1+t)*(1-3*t)) + sqrt((1-2*t)*(1+t+2*t^2)*(1-t)^3) + sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t))
Comments