cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325932 Indices k of Gram points g(k) for successive negative maximal values of the Riemann zeta function on the critical line.

Original entry on oeis.org

126, 211, 288, 377, 703, 869, 964, 1933, 1935, 2675, 3970, 4265, 4657, 5225, 6618, 8374, 8569, 18014, 25461, 28812, 36719, 50512, 74399, 83452, 90051, 103715, 146919, 164189, 185011, 206716
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2019

Keywords

Comments

This sequence is subset of A114856.
The n-th Gram point occurs when the Riemann-Siegel theta function is equal to Pi*n.
Gram points occur when the imaginary part of the Riemann zeta function on the critical line is zero but the real part is nonzero.
For very small values of Riemann zeta function at Gram points, the distance to the nearest zero of Riemann zeta function is very small.
For indices of successive positive minima of the Riemann zeta function at Gram points g(n) see A326890.
For indices of successive positive maxima of the Riemann zeta function at Gram points g(n) see A327543.
Computed record value of this sequence is a(n)=2601005843707 with value zeta[1/2+I*g(a(n))]= -119.630432107724 (Kotnik 2003).

Examples

			   n |  a(n)  | Zeta[1/2+I*g(a(n))]  |    g(a(n))
-=---+--------+----------------------+------------
   1 |    126 | -0.02762949885719994 |  282.4547208
   2 |    211 | -0.38288957164454790 |  415.6014600
   3 |    288 | -0.66545881605404208 |  527.6973416
   4 |    377 | -0.83760106086093435 |  650.8910448
   5 |    703 | -1.00455040613260376 | 1068.189532
   6 |    869 | -1.27120822682165464 | 1267.847910
   7 |    964 | -1.392200186869156   | 1379.419269
   8 |   1933 | -1.413878403700959   | 2446.574386
   9 |   1935 | -1.881639907182627   | 2448.681071
  10 |   2675 | -2.062586314581326   | 3210.042865
  11 |   3970 | -2.1482691132271     | 4479.035743
  12 |   4265 | -2.1659698746279     | 4759.875045
  13 |   4657 | -2.2554659693900     | 5129.256083
  14 |   5225 | -2.4955901590107     | 5657.609720
  15 |   6618 | -2.60670539564937    | 6924.738490
  16 |   8374 | -2.95430731615046    | 8476.646123
		

Crossrefs

Programs

  • Mathematica
    ff = 0; aa = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][n Pi], 10]]];
    If[kk < ff, AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa