A325937 Expansion of Sum_{k>=1} (-1)^(k + 1) * x^(2*k) / (1 - x^k).
0, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1, -1, 1, 1, 3, -2, 1, 1, 1, -1, 3, 1, 1, -3, 2, 1, 3, -1, 1, 1, 1, -3, 3, 1, 3, -2, 1, 1, 3, -3, 1, 1, 1, -1, 5, 1, 1, -5, 2, 1, 3, -1, 1, 1, 3, -3, 3, 1, 1, -3, 1, 1, 5, -4, 3, 1, 1, -1, 3, 1, 1, -5, 1, 1, 5, -1, 3, 1, 1, -5
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[-DivisorSum[n, (-1)^# &, # < n &], {n, 1, 80}]
-
PARI
A325937(n) = -sumdiv(n, d, if(d==n,0,((-1)^d))); \\ Antti Karttunen, Sep 20 2019
Formula
G.f.: Sum_{k>=2} x^k / (1 + x^k).
a(n) = -Sum_{d|n, d
a(n) = A048272(n) + (-1)^n.
Comments