A325939 Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k).
0, 1, -1, 2, -1, 1, -1, 3, -2, 1, -1, 3, -1, 1, -3, 4, -1, 1, -1, 3, -3, 1, -1, 5, -2, 1, -3, 3, -1, 1, -1, 5, -3, 1, -3, 4, -1, 1, -3, 5, -1, 1, -1, 3, -5, 1, -1, 7, -2, 1, -3, 3, -1, 1, -3, 5, -3, 1, -1, 5, -1, 1, -5, 6, -3, 1, -1, 3, -3, 1, -1, 7, -1, 1, -5, 3, -3, 1, -1, 7
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
nmax = 80; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[DivisorSum[n, (-1)^# &, # > 1 &], {n, 1, 80}]
-
PARI
A325939(n) = sumdiv(n, d, if(1==d,0,((-1)^d))); \\ Antti Karttunen, Sep 20 2019
Comments