A325941 Expansion of Sum_{k>=1} k * x^(2*k) / (1 + x^k)^2.
0, 1, -2, 5, -4, 4, -6, 17, -14, 6, -10, 28, -12, 8, -36, 49, -16, 13, -18, 46, -52, 12, -22, 100, -44, 14, -68, 64, -28, 24, -30, 129, -84, 18, -92, 121, -36, 20, -100, 166, -40, 32, -42, 100, -192, 24, -46, 292, -90, 31, -132, 118, -52, 40, -148, 232, -148, 30, -58, 264
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Sum[k x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[Sum[(-1)^(n/d) (n - d), {d, Divisors[n]}], {n, 1, 60}]
-
PARI
{a(n) = sumdiv(n, d, (-1)^(n/d)*(n-d))} \\ Seiichi Manyama, Sep 14 2019