A325979 Odd numbers k for which gcd(A325977(k), A325978(k)) is equal to abs(A325978(k)).
1, 3465, 72981, 78651, 80937, 152703, 199341, 201771, 241605, 253287, 492507, 631881, 880821, 933147, 985473, 1063755, 1209285, 1244133, 1292445, 1313235, 1327095, 1347885, 1360881, 1451835, 1521135, 1597365, 1620375, 1814373, 2015475, 2664585, 6058233, 6676371, 8186751, 11119761, 17496243, 18379935, 28695627
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..281 (terms < 10^12; first 65 terms from Antti Karttunen)
- Index entries for sequences where any odd perfect numbers must occur.
Programs
-
PARI
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 A034460(n) = (A034448(n) - n); A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); A325313(n) = (A048250(n) - n); A325977(n) = ((A034460(n)+A325313(n))/2); A162296(n) = sumdiv(n, d, d*(1-issquarefree(d))); A325314(n) = (n - A162296(n)); A048146(n) = (sigma(n)-A034448(n)); A325814(n) = (n-A048146(n)); A325978(n) = ((A325314(n)+A325814(n))/2); A325975(n) = gcd(A325977(n), A325978(n)); isA325979(n) = ((n%2)&&(A325975(n)==abs(A325978(n)))); \\ Or alternatively as: isA325979(n) = if(!(n%2),0,my(x = A325977(n), y = A325978(n)); (!x&&!y)||(y&&!(x%y)));
Comments