cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325975 a(n) = gcd(A325977(n), A325978(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

See comments in A325979 and A325981.

Crossrefs

Programs

Formula

a(n) = gcd(A325977(n), A325978(n)).
a(n) = (1/2)*gcd(A034460(n)+A325313(n), A325814(n)+A325314(n)).

A325981 Odd composites for which gcd(A325977(n), A325978(n)) is equal to abs(A325977(n)).

Original entry on oeis.org

45, 495, 585, 765, 855, 1305, 18837, 21525, 31635, 38295, 45315, 50445, 51255, 60435, 63495, 68085, 77265, 96615, 1403115, 2446353, 3411975, 3999465, 4091745, 4233537, 4287255, 4631319, 10813425, 10967085, 11490345, 15578199, 16143309, 16329645, 16633071, 17179515, 17311203, 17355915, 21159075, 21933975, 22579725
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977 and A325978 are never zero on same n, these are odd composite numbers n such that A325977(n) is not zero and divides A325978(n).
Based on the first 147 terms it seems that this sequence is a subsequence of A072357, that is each term has exactly one prime factor with exponent 2, with one or more other prime factors that are all unitary (i.e., each term satisfies A001222(x) - A001221(x) = 1). On the other hand, it has been proved that no odd perfect number, if such numbers exist at all, can have such a factorization (see A326137 and a link to P. P. Nielsen's paper there).
Nineteen initial terms factorize as:
45 = 3^2 * 5^1,
495 = 3^2 * 5^1 * 11^1,
585 = 3^2 * 5^1 * 13^1,
765 = 3^2 * 5^1 * 17^1,
855 = 3^2 * 5^1 * 19^1,
1305 = 3^2 * 5^1 * 29^1,
18837 = 3^2 * 7^1 * 13^1 * 23^1,
21525 = 3^1 * 5^2 * 7^1 * 41^1,
31635 = 3^2 * 5^1 * 19^1 * 37^1,
38295 = 3^2 * 5^1 * 23^1 * 37^1,
45315 = 3^2 * 5^1 * 19^1 * 53^1,
50445 = 3^2 * 5^1 * 19^1 * 59^1,
51255 = 3^2 * 5^1 * 17^1 * 67^1,
60435 = 3^2 * 5^1 * 17^1 * 79^1,
63495 = 3^2 * 5^1 * 17^1 * 83^1,
68085 = 3^2 * 5^1 * 17^1 * 89^1,
77265 = 3^2 * 5^1 * 17^1 * 101^1,
96615 = 3^2 * 5^1 * 19^1 * 113^1,
1403115 = 3^1 * 5^1 * 7^2 * 23^1 * 83^1,
and the 62nd term as a(62) = 2919199437 = 3^2 * 7^1 * 11^1 * 43^1 * 163^1 * 601^1.
If we select a subsequence of terms for which the quotient A325978(n)/A325977(n) is positive, then we are left with the following numbers: 495, 585, 31635, 38295, 45315, 51255, 60435, 63495, 1403115, 3999465, etc. which is a subsequence of A326070.

Crossrefs

Programs

A325977 a(n) = (1/2)*(A034460(n) + A325313(n)).

Original entry on oeis.org

0, 1, 1, 0, 1, 6, 1, -2, -2, 8, 1, 4, 1, 10, 9, -6, 1, 3, 1, 4, 11, 14, 1, 0, -9, 16, -11, 4, 1, 42, 1, -14, 15, 20, 13, -5, 1, 22, 17, -4, 1, 54, 1, 4, -3, 26, 1, -8, -20, -2, 21, 4, 1, -6, 17, -8, 23, 32, 1, 36, 1, 34, -7, -30, 19, 78, 1, 4, 27, 74, 1, -21, 1, 40, -11, 4, 19, 90, 1, -20, -38, 44, 1, 44, 23, 46, 33, -16, 1, 36, 21, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are n = 1, 4, 24, 240, 349440 (A325963) the only positions of zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A034460(n) + A325313(n)).
a(n) = A325973(n) - n.
a(n) = A325978(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/4 = 0.0921081944... . - Amiram Eldar, Feb 22 2024

A325978 a(n) = (1/2)*(A325314(n) + A325814(n)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, -1, 3, 10, 11, 0, 13, 14, 15, -5, 17, 0, 19, 2, 21, 22, 23, -12, 10, 26, 3, 4, 29, 30, 31, -13, 33, 34, 35, -24, 37, 38, 39, -14, 41, 42, 43, 8, 9, 46, 47, -36, 21, 5, 51, 10, 53, -18, 55, -16, 57, 58, 59, -12, 61, 62, 15, -29, 65, 66, 67, 14, 69, 70, 71, -72, 73, 74, 15, 16, 77, 78, 79, -46, 3, 82, 83, -12, 85
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are a(12) = 0 and a(18) = 0 the only zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A325314(n) + A325814(n)).
a(n) = n - A325974(n).
a(n) = A033879(n) + A325977(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/4 - zeta(2)*(1/2 - 1/(4*zeta(3))) = 0.2696411609... . - Amiram Eldar, Feb 22 2024
Showing 1-4 of 4 results.