A325982 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1, with n >= 1 and 0 <= k < n/2.
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 13, 1, 1, 3, 16, 1, 1, 3, 19, 53, 1, 1, 3, 22, 75, 1, 1, 3, 25, 101, 206, 1, 1, 3, 28, 131, 316, 1, 1, 3, 31, 165, 461, 787, 1, 1, 3, 34, 203, 646, 1267, 1, 1, 3, 37, 245, 876, 1947, 2997, 1, 1, 3, 40, 291, 1156, 2878, 4978
Offset: 1
Examples
The triangle T(n, k) begins n\k| 0 1 2 3 4 ---+---------------------- 1 | 1 2 | 1 3 | 1 1 4 | 1 1 5 | 1 1 3 6 | 1 1 3 7 | 1 1 3 13 8 | 1 1 3 16 9 | 1 1 3 19 53 10 | 1 1 3 22 75 ...
Links
- Stefano Spezia, First 200 rows of the triangle, flattened
- Peter Frankl, A simple proof of the Hilton-Milner theorem, Moscow Journal of Combinatorics and Number Theory, Volume 8, Number 2 (2019), 97-101.
- Peter Frankl and Zoltán Füredi, Non-trivial Intersecting Families, Journal of Combinatorial Theory, Series A, Vol. 41, No. 1, January 1986.
- Peter Frankl and Andrey Kupavskii, Sharp results concerning disjoint cross-intersecting families, arXiv:1905.08123 [math.CO], 2019.
- Peter Frankl and Andrey Kupavskii, Uniform intersecting families with large covering number, arXiv:2106.05344 [math.CO], 2021. See p. 2.
- Anthony J. W. Hilton and Eric Charles Milner, Some Intersection Theorems for Systems of Finite Sets, The Quarterly Journal of Mathematics, Volume 18, Issue 1, 1967, Pages 369-384.
- Russ Woodroofe, An algebraic groups perspective on Erdős-Ko-Rado, arXiv:2007.03707 [math.CO], 2020. See p. 2.
Programs
-
GAP
Flat(List([1..15], n->List([0..Int((n-1)/2)], k->Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1)));
-
Magma
[[Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1: k in [0..Floor((n-1)/2)]]: n in [1 .. 15]]; // triangle output
-
Maple
a := (n, k) -> binomial(n-1, k-1)-binomial(n-k-1, k-1)+1: seq(seq(a(n, k), k = 0 .. floor((n-1)/2)), n = 1 .. 15);
-
Mathematica
T[n_,k_]:=Binomial[n-1,k-1]-Binomial[n-k-1,k-1]+1; Flatten[Table[T[n,k],{n,1,15},{k,0,Floor[(n-1)/2]}]]
-
PARI
T(n, k) = binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1; tabf(nn) = for(i=1, nn, for(j=0, floor((i-1)/2), print1(T(i, j), ", ")); print); tabf(15) \\ triangle output
Comments