cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325983 Row sums of the triangle A325982.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 18, 21, 77, 102, 337, 480, 1449, 2155, 6107, 9348, 25355, 39639, 104188, 165596, 425156, 684926, 1726737, 2813582, 6990175, 11501905, 28232753, 46854161, 113841632, 190362483, 458480128, 771855377, 1844765161, 3124639626, 7417428613, 12633074088
Offset: 1

Views

Author

Stefano Spezia, May 29 2019

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n->Sum([0..Int((n-1)/2)], k->Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1));
    
  • Magma
    [(&+[Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1: k in [0..Floor((n-1)/2)]]): n in [1..40]];
    
  • Maple
    a := n -> add(binomial(n-1, k-1)-binomial(n-k-1, k-1)+1, k = 0 .. floor((n-1)/2)): seq(a(n), n = 1 .. 40);
  • Mathematica
    T[n_,k_]:=Binomial[n-1,k-1]-Binomial[n-k-1,k-1]+1; a[n_]:=Sum[T[n,k],{k,0,Floor[(n-1)/2]}]; Array[a,40]
    Table[If[EvenQ[n], 2^(n - 2) + n/2 + 1 - Binomial[n, n/2]/2 + Fibonacci[n]/2 - LucasL[n]/2, 2^(n - 2) + (n + 1)/2 - Binomial[n - 1, (n - 1)/2]/2 - Fibonacci[n - 3] - 3*Fibonacci[n]/2 + LucasL[n]/2], {n, 1, 40}] (* Vaclav Kotesovec, Jun 20 2021 *)
  • PARI
    a(n) = sum(k=0, floor((n-1)/2), binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1);

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1.
a(n) = Sum_{k=0..A004526(n-1)} A007318(n - 1, k - 1) - A007318(n - k - 1, k - 1) + 1.
Conjecture: a(n) ~ 2^(n-2). - Stefano Spezia, Jun 16 2021
This conjecture is true. Its proof follows from Vaclav Kotesovec's formula used in the 2nd Mathematica code. - Stefano Spezia, Jun 27 2021
Recurrence: n*(15*n^6 - 600*n^5 + 9874*n^4 - 85078*n^3 + 403791*n^2 - 1000762*n + 1013720)*a(n) = (45*n^7 - 1815*n^6 + 30507*n^5 - 273677*n^4 + 1393992*n^3 - 3930412*n^2 + 5362320*n - 2240000)*a(n-1) + 2*(30*n^7 - 1230*n^6 + 20813*n^5 - 186314*n^4 + 944533*n^3 - 2692476*n^2 + 3985604*n - 2395680)*a(n-2) - (255*n^7 - 10470*n^6 + 180608*n^5 - 1685204*n^4 + 9136801*n^3 - 28646510*n^2 + 47833000*n - 32569600)*a(n-3) + (15*n^7 - 585*n^6 + 11089*n^5 - 129179*n^4 + 931040*n^3 - 3910812*n^2 + 8540192*n - 7271040)*a(n-4) + 2*(165*n^7 - 6810*n^6 + 118529*n^5 - 1121692*n^4 + 6211866*n^3 - 20094734*n^2 + 35150196*n - 25693920)*a(n-5) - 4*(15*n^7 - 600*n^6 + 10309*n^5 - 98168*n^4 + 555848*n^3 - 1857428*n^2 + 3364504*n - 2524480)*a(n-6) - 8*(n-7)*(15*n^6 - 510*n^5 + 7099*n^4 - 51282*n^3 + 202026*n^2 - 411828*n + 340960)*a(n-7). - Vaclav Kotesovec, Jun 20 2021

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.
Showing 1-2 of 2 results.