cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325982 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1, with n >= 1 and 0 <= k < n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 13, 1, 1, 3, 16, 1, 1, 3, 19, 53, 1, 1, 3, 22, 75, 1, 1, 3, 25, 101, 206, 1, 1, 3, 28, 131, 316, 1, 1, 3, 31, 165, 461, 787, 1, 1, 3, 34, 203, 646, 1267, 1, 1, 3, 37, 245, 876, 1947, 2997, 1, 1, 3, 40, 291, 1156, 2878, 4978
Offset: 1

Views

Author

Stefano Spezia, May 29 2019

Keywords

Comments

Given X an n-element set and F a family of k-subsets of X. If n > 2*k and F is a nontrivial intersecting family, then the cardinality of F is almost equal to T(n, k). A family F is called trivial if all its members contain a fixed element of X (see Hilton-Milner Theorem in Links).

Examples

			The triangle T(n, k) begins
  n\k|   0   1   2    3    4
  ---+----------------------
   1 |   1
   2 |   1
   3 |   1   1
   4 |   1   1
   5 |   1   1   3
   6 |   1   1   3
   7 |   1   1   3   13
   8 |   1   1   3   16
   9 |   1   1   3   19   53
  10 |   1   1   3   22   75
  ...
		

Crossrefs

Cf. A004526, A007318, A325983 (row sums).

Programs

  • GAP
    Flat(List([1..15], n->List([0..Int((n-1)/2)], k->Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1)));
    
  • Magma
    [[Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1: k in [0..Floor((n-1)/2)]]: n in [1 .. 15]]; // triangle output
    
  • Maple
    a := (n, k) -> binomial(n-1, k-1)-binomial(n-k-1, k-1)+1: seq(seq(a(n, k), k = 0 .. floor((n-1)/2)), n = 1 .. 15);
  • Mathematica
    T[n_,k_]:=Binomial[n-1,k-1]-Binomial[n-k-1,k-1]+1; Flatten[Table[T[n,k],{n,1,15},{k,0,Floor[(n-1)/2]}]]
  • PARI
    T(n, k) = binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1;
    tabf(nn) = for(i=1, nn, for(j=0, floor((i-1)/2), print1(T(i, j), ", ")); print);
    tabf(15) \\ triangle output

Formula

T(n, k) = A007318(n - 1, k - 1) - A007318(n - k - 1, k - 1) + 1.

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.
Showing 1-2 of 2 results.