A325983 Row sums of the triangle A325982.
1, 1, 2, 2, 5, 5, 18, 21, 77, 102, 337, 480, 1449, 2155, 6107, 9348, 25355, 39639, 104188, 165596, 425156, 684926, 1726737, 2813582, 6990175, 11501905, 28232753, 46854161, 113841632, 190362483, 458480128, 771855377, 1844765161, 3124639626, 7417428613, 12633074088
Offset: 1
Keywords
Links
- Stefano Spezia, Table of n, a(n) for n = 1..2000
Programs
-
GAP
List([1..40], n->Sum([0..Int((n-1)/2)], k->Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1));
-
Magma
[(&+[Binomial(n-1, k-1)-Binomial(n-k-1, k-1)+1: k in [0..Floor((n-1)/2)]]): n in [1..40]];
-
Maple
a := n -> add(binomial(n-1, k-1)-binomial(n-k-1, k-1)+1, k = 0 .. floor((n-1)/2)): seq(a(n), n = 1 .. 40);
-
Mathematica
T[n_,k_]:=Binomial[n-1,k-1]-Binomial[n-k-1,k-1]+1; a[n_]:=Sum[T[n,k],{k,0,Floor[(n-1)/2]}]; Array[a,40] Table[If[EvenQ[n], 2^(n - 2) + n/2 + 1 - Binomial[n, n/2]/2 + Fibonacci[n]/2 - LucasL[n]/2, 2^(n - 2) + (n + 1)/2 - Binomial[n - 1, (n - 1)/2]/2 - Fibonacci[n - 3] - 3*Fibonacci[n]/2 + LucasL[n]/2], {n, 1, 40}] (* Vaclav Kotesovec, Jun 20 2021 *)
-
PARI
a(n) = sum(k=0, floor((n-1)/2), binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1);
Formula
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n - 1, k - 1) - binomial(n - k - 1, k - 1) + 1.
Conjecture: a(n) ~ 2^(n-2). - Stefano Spezia, Jun 16 2021
This conjecture is true. Its proof follows from Vaclav Kotesovec's formula used in the 2nd Mathematica code. - Stefano Spezia, Jun 27 2021
Recurrence: n*(15*n^6 - 600*n^5 + 9874*n^4 - 85078*n^3 + 403791*n^2 - 1000762*n + 1013720)*a(n) = (45*n^7 - 1815*n^6 + 30507*n^5 - 273677*n^4 + 1393992*n^3 - 3930412*n^2 + 5362320*n - 2240000)*a(n-1) + 2*(30*n^7 - 1230*n^6 + 20813*n^5 - 186314*n^4 + 944533*n^3 - 2692476*n^2 + 3985604*n - 2395680)*a(n-2) - (255*n^7 - 10470*n^6 + 180608*n^5 - 1685204*n^4 + 9136801*n^3 - 28646510*n^2 + 47833000*n - 32569600)*a(n-3) + (15*n^7 - 585*n^6 + 11089*n^5 - 129179*n^4 + 931040*n^3 - 3910812*n^2 + 8540192*n - 7271040)*a(n-4) + 2*(165*n^7 - 6810*n^6 + 118529*n^5 - 1121692*n^4 + 6211866*n^3 - 20094734*n^2 + 35150196*n - 25693920)*a(n-5) - 4*(15*n^7 - 600*n^6 + 10309*n^5 - 98168*n^4 + 555848*n^3 - 1857428*n^2 + 3364504*n - 2524480)*a(n-6) - 8*(n-7)*(15*n^6 - 510*n^5 + 7099*n^4 - 51282*n^3 + 202026*n^2 - 411828*n + 340960)*a(n-7). - Vaclav Kotesovec, Jun 20 2021