A326028 Number of factorizations of n into factors > 1 with integer geometric mean.
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1
Keywords
Examples
The a(4) = 2 through a(36) = 5 factorizations (showing only the cases where n is a perfect power). (4) (8) (9) (16) (25) (27) (32) (36) (2*2) (2*2*2) (3*3) (2*8) (5*5) (3*3*3) (2*2*2*2*2) (4*9) (4*4) (6*6) (2*2*2*2) (2*18) (3*12)
Links
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],IntegerQ[GeometricMean[#]]&]],{n,2,100}]
-
PARI
A326028(n, m=n, facmul=1, facnum=0) = if(1==n,facnum>0 && ispower(facmul,facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326028(n/d, d, facmul*d, facnum+1))); (s)); \\ Antti Karttunen, Nov 10 2024
Formula
a(2^n) = A067538(n).
Extensions
a(89) onwards from Antti Karttunen, Nov 10 2024
Comments