A326950
Number of T_0 antichains of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 2, 4, 12, 107, 6439, 7726965, 2414519001532, 56130437161079183223017, 286386577668298409107773412840148848120595
Offset: 0
The a(0) = 1 through a(3) = 12 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1},{2}} {{3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
Antichains of nonempty sets are
A014466.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}]
A326574
Number of antichains of subsets of {1..n} with equal edge-sums.
Original entry on oeis.org
2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
Offset: 0
The a(0) = 2 through a(4) = 22 antichains:
{} {} {} {} {}
{{}} {{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}} {{1}}
{{2}} {{2}} {{2}}
{{1,2}} {{3}} {{3}}
{{1,2}} {{4}}
{{1,3}} {{1,2}}
{{2,3}} {{1,3}}
{{1,2,3}} {{1,4}}
{{3},{1,2}} {{2,3}}
{{2,4}}
{{3,4}}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3,4}}
{{3},{1,2}}
{{4},{1,3}}
{{1,4},{2,3}}
{{2,4},{1,2,3}}
{{3,4},{1,2,4}}
Set partitions with equal block-sums are
A035470.
Antichains with different edge-sums are
A326030.
MM-numbers of multiset partitions with equal part-sums are
A326534.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&];
Table[Length[cleqset[Range[n]]],{n,0,5}]
A327903
Number of set-systems covering n vertices where every edge has a different sum.
Original entry on oeis.org
1, 1, 5, 77, 7369, 10561753, 839653402893, 15924566366443524837, 315320784127456186118309342769, 29238175285109256786706269143580213236526609, 59347643832090275881798554403880633753161146711444051797893301
Offset: 0
The a(3) = 77 set-systems:
123 1-23 1-2-3 1-2-3-13 1-2-3-13-23 1-2-3-13-23-123
2-13 1-2-13 1-2-3-23 1-2-12-13-23 1-2-12-13-23-123
1-123 1-2-23 1-2-12-13 1-2-3-13-123
12-13 1-3-23 1-2-12-23 1-2-3-23-123
12-23 2-3-13 1-2-13-23 1-2-12-13-123
13-23 1-12-13 1-2-3-123 1-2-12-23-123
2-123 1-12-23 1-3-13-23 1-2-13-23-123
3-123 1-13-23 2-3-13-23 1-3-13-23-123
12-123 1-2-123 1-12-13-23 2-3-13-23-123
13-123 1-3-123 1-2-12-123 1-12-13-23-123
23-123 2-12-13 1-2-13-123 2-12-13-23-123
2-12-23 1-2-23-123
2-13-23 1-3-13-123
2-3-123 1-3-23-123
3-13-23 2-12-13-23
1-12-123 2-3-13-123
1-13-123 2-3-23-123
12-13-23 1-12-13-123
1-23-123 1-12-23-123
2-12-123 1-13-23-123
2-13-123 2-12-13-123
2-23-123 2-12-23-123
3-13-123 2-13-23-123
3-23-123 3-13-23-123
12-13-123 12-13-23-123
12-23-123
13-23-123
Cf.
A003465,
A006126,
A035470,
A275780,
A321469,
A326030,
A326519,
A326535,
A326565,
A326571,
A326573.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
qes[n_]:=Select[stableSets[Subsets[Range[n],{1,n}],Total[#1]==Total[#2]&],Union@@#==Range[n]&];
Table[Length[qes[n]],{n,0,4}]
-
\\ by inclusion/exclusion on covered vertices.
C(v)={my(u=Vecrev(-1 + prod(k=1, #v, 1 + x^v[k]))); prod(i=1, #u, 1 + u[i])}
a(n)={my(s=0); forsubset(n, v, s += (-1)^(n-#v)*C(v)); s} \\ Andrew Howroyd, Oct 02 2019
A327904
Number of labeled simple graphs with vertices {1..n} such that every edge has a different sum.
Original entry on oeis.org
1, 1, 2, 8, 48, 432, 5184, 82944, 1658880, 41472000, 1244160000, 44789760000, 1881169920000, 92177326080000, 5161930260480000, 330363536670720000, 23786174640291840000, 1926680145863639040000, 173401213127727513600000, 17340121312772751360000000
Offset: 0
The graph with edge-set {{1,2},{1,3},{1,4},{2,3}}, which looks like a triangle with a tail, has edges {1,4} and {2,3} with equal sum, so is not counted under a(4).
The generalization to antichains is
A326030.
-
a:= proc(n) option remember; `if`(n=0, 1,
a(n-1)*ceil(n/2)*ceil(n/2+1/4))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 03 2019
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
qes[n_]:=stableSets[Subsets[Range[n],{2}],Total[#1]==Total[#2]&];
Table[Length[qes[n]],{n,0,5}]
-
a(n) = {prod(k=1, 2*n+1, ceil(k/4))} \\ Andrew Howroyd, Oct 02 2019
Showing 1-4 of 4 results.
Comments