A326031 Weight of the set-system with BII-number n.
0, 1, 1, 2, 2, 3, 3, 4, 1, 2, 2, 3, 3, 4, 4, 5, 2, 3, 3, 4, 4, 5, 5, 6, 3, 4, 4, 5, 5, 6, 6, 7, 2, 3, 3, 4, 4, 5, 5, 6, 3, 4, 4, 5, 5, 6, 6, 7, 4, 5, 5, 6, 6, 7, 7, 8, 5, 6, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 6, 7, 4, 5, 5, 6, 6, 7, 7, 8, 5, 6, 6, 7, 7, 8, 8, 9
Offset: 0
Examples
The sequence of set-systems together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 3: {{1},{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 7: {{1},{2},{1,2}} 8: {{3}} 9: {{1},{3}} 10: {{2},{3}} 11: {{1},{2},{3}} 12: {{1,2},{3}} 13: {{1},{1,2},{3}} 14: {{2},{1,2},{3}} 15: {{1},{2},{1,2},{3}} 16: {{1,3}} 17: {{1},{1,3}} 18: {{2},{1,3}} 19: {{1},{2},{1,3}} 20: {{1,2},{1,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..8192
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[Join@@bpe/@bpe[n]],{n,0,100}]
-
Python
def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def A326031(n): return sum(i.bit_count() for i in bin_i(n)) # John Tyler Rascoe, Jun 08 2024
Formula
a(2^x + ... + 2^z) = w(x + 1) + ... + w(z + 1), where x...z are distinct nonnegative integers and w = A000120. For example, a(6) = a(2^2 + 2^1) = w(3) + w(2) = 3.
Comments