A326017 Triangle read by rows where T(n,k) is the number of knapsack partitions of n with maximum k.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 3, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 1, 1, 0, 1, 1, 2, 2, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 1, 4, 3, 2, 1, 1, 0, 1, 1, 3, 3, 4, 6, 4, 3, 2, 1, 1, 0, 1, 1, 1, 1, 3, 1, 6, 4
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 2 1 1 0 1 1 1 2 1 1 0 1 1 2 3 2 1 1 0 1 1 2 1 3 2 1 1 0 1 1 2 2 4 3 2 1 1 0 1 1 2 3 1 4 3 2 1 1 0 1 1 3 3 4 6 4 3 2 1 1 0 1 1 1 1 3 1 6 4 3 2 1 1 0 1 1 3 3 5 4 7 6 4 3 2 1 1 0 1 1 2 3 5 4 1 7 6 4 3 2 1 1 0 1 1 2 3 4 6 6 11 7 6 4 3 2 1 1 Row n = 9 counts the following partitions: (111111111) (22221) (333) (432) (54) (63) (72) (81) (9) (3222) (441) (522) (621) (711) (531) (6111) (51111)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10010
- Fausto A. C. Cariboni, Conjectures on columns of T(n,k), Jun 05 2021.
Crossrefs
Programs
-
Mathematica
ks[n_]:=Select[IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&]; Table[Length[Select[ks[n],Length[#]==k==0||Max@@#==k&]],{n,0,15},{k,0,n}]
Comments