A326016
Number of knapsack partitions of n such that no addition of one part up to the maximum is knapsack.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 0, 0, 1, 0, 8, 0, 8, 4, 3, 0, 11, 5, 3, 2, 5, 0, 29, 2, 9, 8, 20, 2
Offset: 1
The initial terms count the following partitions:
15: (5,4,3,3)
21: (7,6,5,3)
21: (7,5,3,3,3)
24: (8,7,6,3)
25: (7,5,5,4,4)
27: (9,8,7,3)
27: (9,7,6,5)
27: (8,7,3,3,3,3)
31: (10,8,6,6,1)
33: (11,9,7,3,3)
33: (11,8,5,5,4)
33: (11,7,6,6,3)
33: (11,7,3,3,3,3,3)
33: (11,5,5,4,4,4)
33: (10,9,8,3,3)
33: (10,8,6,6,3)
33: (10,8,3,3,3,3,3)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
ksQ[y_]:=Length[sums[Sort[y]]]==Times@@(Length/@Split[Sort[y]]+1)-1;
maxks[n_]:=Select[IntegerPartitions[n],ksQ[#]&&Select[Table[Sort[Append[#,i]],{i,Range[Max@@#]}],ksQ]=={}&];
Table[Length[maxks[n]],{n,30}]
A326015
Number of strict knapsack partitions of n such that no superset with the same maximum is knapsack.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 4, 4, 5, 3, 3, 4, 6, 2, 7, 6, 13, 9, 19, 16, 27, 21, 40, 33, 47, 37, 54, 48, 66, 51, 65, 65, 77, 64, 80, 71, 96, 60, 106, 95, 112, 93, 152, 114, 191, 131, 242, 192, 303, 210, 366, 300, 482, 352, 581, 450, 713, 539, 882, 689, 995
Offset: 1
The a(1) = 1 through a(17) = 6 strict knapsack partitions (empty columns not shown):
{1} {2,1} {3,1} {3,2} {4,2,1} {5,2,1} {4,3,2} {6,3,1} {5,4,2}
{5,3,1} {7,2,1} {6,3,2}
{6,2,1} {6,4,1}
{7,3,1}
.
{5,4,3} {6,4,3} {6,5,3} {6,5,4} {7,5,4} {7,6,4}
{7,3,2} {6,5,2} {8,5,1} {7,6,2} {9,4,3} {9,5,3}
{7,4,1} {7,4,2} {9,3,2} {8,4,2,1} {9,6,1} {9,6,2}
{8,3,1} {7,5,1} {9,4,2,1} {8,4,3,2}
{9,3,1} {9,5,2,1}
{10,4,2,1}
-
ksQ[y_]:=UnsameQ@@Total/@Union[Subsets[y]]
maxsks[n_]:=Select[Select[IntegerPartitions[n],UnsameQ@@#&&ksQ[#]&],Select[Table[Append[#,i],{i,Complement[Range[Max@@#],#]}],ksQ]=={}&];
Table[Length[maxsks[n]],{n,30}]
A326034
Number of knapsack partitions of n with largest part 3.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2
Offset: 0
The initial values count the following partitions:
3: (3)
4: (3,1)
5: (3,2)
5: (3,1,1)
6: (3,3)
7: (3,3,1)
7: (3,2,2)
8: (3,3,2)
8: (3,3,1,1)
9: (3,3,3)
9: (3,2,2,2)
10: (3,3,3,1)
10: (3,3,2,2)
11: (3,3,3,2)
11: (3,3,3,1,1)
11: (3,2,2,2,2)
12: (3,3,3,3)
13: (3,3,3,3,1)
13: (3,3,3,2,2)
13: (3,2,2,2,2,2)
14: (3,3,3,3,2)
14: (3,3,3,3,1,1)
15: (3,3,3,3,3)
15: (3,2,2,2,2,2,2)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
kst[n_]:=Select[IntegerPartitions[n,All,{1,2,3}],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
Table[Length[Select[kst[n],Max@@#==3&]],{n,0,30}]
A343321
Number of knapsack partitions of n with largest part 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 1, 4, 3, 5, 5, 4, 4, 6, 5, 7, 2, 6, 5, 8, 5, 4, 6, 7, 6, 8, 2, 8, 6, 7, 7, 5, 5, 8, 7, 8, 2, 8, 6, 9, 6, 3, 7, 9, 5, 8, 3, 8, 6, 8, 6, 5, 6, 7, 7, 9, 1, 8, 7, 8, 6, 4, 6, 9, 6, 7, 3, 9, 5, 8, 7, 4, 6, 8, 6, 9, 2, 7, 7, 9, 5, 4, 7
Offset: 0
The initial values count the following partitions:
5: (5)
6: (5,1)
7: (5,1,1)
7: (5,2)
8: (5,1,1,1)
8: (5,2,1)
8: (5,3)
A344310
Number of knapsack partitions of n with largest part 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 2, 3, 1, 2, 3, 3, 1, 3, 3, 3, 2, 3, 3, 4, 2, 3, 4, 4, 1, 4, 4, 3, 2, 4, 3, 4, 2, 3, 4, 4, 1, 4, 4, 3, 2, 4, 3, 4, 2, 3, 4, 4, 1, 4, 4, 3, 2, 4, 3, 4, 2, 3, 4, 4, 1, 4, 4, 3, 2, 4, 3, 4, 2, 3, 4, 4, 1, 4, 4, 3, 2, 4, 3, 4, 2, 3, 4, 4, 1, 4, 4
Offset: 0
The initial values count the following partitions:
4: (4)
5: (4,1)
6: (4,1,1)
6: (4,2)
7: (4,1,1,1)
7: (4,2,1)
7: (4,3)
8: (4,4)
A344340
Number of knapsack partitions of n with largest part 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 1, 4, 4, 6, 5, 7, 3, 7, 4, 8, 6, 10, 2, 7, 6, 9, 6, 9, 2, 9, 5, 9, 7, 9, 2, 8, 7, 10, 5, 9, 3, 10, 6, 8, 7, 10, 3, 9, 6, 10, 6, 10, 4, 9, 6, 9, 8, 11, 1, 9, 7, 11, 7, 8, 3, 10, 7, 10, 6, 10, 2, 10, 8, 9, 6, 9, 4, 11, 5, 9, 7
Offset: 0
The initial values count the following partitions:
6: (6)
7: (6,1)
8: (6,1,1)
8: (6,2)
9: (6,1,1,1)
9: (6,2,1)
9: (6,3)
A326035
Number of uniform knapsack partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 6, 6, 9, 10, 12, 12, 17, 16, 20, 25, 27, 29, 35, 39, 44, 57, 53, 66, 75, 84, 84, 114, 112, 131, 133, 162, 167, 209, 192, 242, 250, 289, 279, 363, 348, 417, 404, 502, 487, 608, 557, 706, 682, 835, 773, 1004, 922, 1149, 1059, 1344, 1257, 1595
Offset: 0
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (421) (71)
(111111) (1111111) (521)
(2222)
(3311)
(11111111)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
ks[n_]:=Select[IntegerPartitions[n],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
Table[Length[Select[ks[n],SameQ@@Length/@Split[#]&]],{n,30}]
A344412
Number of knapsack partitions of n with largest part 7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 1, 6, 5, 8, 7, 10, 8, 8, 9, 11, 8, 13, 11, 13, 5, 14, 8, 13, 10, 17, 12, 8, 10, 14, 13, 14, 12, 18, 3, 15, 11, 15, 14, 17, 12, 8, 12, 15, 13, 20, 12, 14, 5, 17, 15, 17, 10, 18, 14, 9, 13, 18, 13, 15, 15, 18, 5, 18, 11
Offset: 0
The initial nonzero values count the following partitions:
7: (7)
8: (7,1)
9: (7,1,1), (7,2)
10: (7,1,1,1), (7,2,1), (7,3)
A344625
Number of knapsack partitions of n with largest part 9.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 11, 12, 1, 10, 7, 11, 10, 17, 12, 18, 16, 12, 15, 19, 13, 25, 20, 17, 22, 29, 6, 25, 20, 22, 20, 28, 16, 31, 21, 14, 23, 33, 15, 24, 22, 25, 28, 30, 8, 31, 20, 22, 22, 36, 16, 34, 26, 14, 23, 26, 22, 33, 25, 24
Offset: 0
The initial nonzero values count the following partitions:
9: (9)
10: (9,1)
11: (9,1,1), (9,2)
12: (9,1,1,1), (9,2,1), (9,3)
A344635
Number of knapsack partitions of n with largest part 10.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 1, 13, 9, 16, 11, 20, 14, 24, 16, 25, 9, 27, 14, 29, 19, 32, 16, 34, 19, 37, 11, 32, 17, 38, 19, 32, 22, 41, 19, 40, 14, 38, 22, 41, 22, 39, 18, 44, 26, 46, 8, 46, 24, 38, 23, 40, 21, 48, 28, 42, 12
Offset: 0
The initial nonzero values count the following partitions:
10: (10)
11: (10,1)
12: (10,1,1), (10,2)
13: (10,1,1,1), (10,2,1), (10,3)
Showing 1-10 of 10 results.
Comments