cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326062 a(1) = gcd((sigma(n)-A032742(n))-n, n-A032742(n)), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 6, 1, 1, 1, 10, 2, 12, 1, 2, 1, 16, 3, 18, 2, 2, 1, 22, 12, 1, 1, 2, 14, 28, 3, 30, 1, 2, 1, 2, 1, 36, 1, 2, 10, 40, 3, 42, 2, 6, 1, 46, 4, 1, 1, 2, 2, 52, 3, 2, 4, 2, 1, 58, 6, 60, 1, 2, 1, 2, 3, 66, 2, 2, 1, 70, 3, 72, 1, 2, 2, 2, 3, 78, 2, 1, 1, 82, 14, 2, 1, 2, 4, 88, 9, 2, 2, 2, 1, 2, 12, 96, 1, 6, 1, 100, 3, 102, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

See comments in A326063 and A326064.

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = gcd(A060681(n), A318505(n)).
a(n) = gcd((A000203(n)-A032742(n))-n, n-A032742(n)).

A326064 Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors.

Original entry on oeis.org

117, 775, 10309, 56347, 88723, 2896363, 9597529, 12326221, 12654079, 25774633, 29817121, 63455131, 105100903, 203822581, 261019543, 296765173, 422857021, 573332713, 782481673, 900952687, 1129152721, 3350861677, 3703086229, 7395290407, 9347001661, 9350506057
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Nineteen initial terms factored:
n a(n) factorization A060681(a(n))/A318505(a(n))
1: 117 = 3^2 * 13, (3)
2: 775 = 5^2 * 31, (10)
3: 10309 = 13^2 * 61, (39)
4: 56347 = 29^2 * 67, (58)
5: 88723 = 17^2 * 307, (136)
6: 2896363 = 41^2 * 1723, (820)
7: 9597529 = 73^2 * 1801, (1314)
8: 12326221 = 59^2 * 3541, (1711)
9: 12654079 = 113^2 * 991, (904)
10: 25774633 = 71^2 * 5113, (2485)
11: 29817121 = 97^2 * 3169, (2328)
12: 63455131 = 89^2 * 8011, (3916)
13: 105100903 = 101^2 * 10303, (5050)
14: 203822581 = 157^2 * 8269, (6123)
15: 261019543 = 349^2 * 2143, (2094)
16: 296765173 = 131^2 * 17293, (8515)
17: 422857021 = 233^2 * 7789, (6757)
18: 573332713 = 331^2 * 5233, (4965)
19: 782481673 = 167^2 * 28057, (13861).
Note how the quotient (in the rightmost column) seems always to be a multiple of non-unitary prime factor and less than the unitary prime factor.
For p, q prime, if p^2+p+1 = kq and k+1|p-1, then p^2*q is in this sequence. - Charlie Neder, Jun 09 2019

Crossrefs

Subsequence of A326063.

Programs

  • Mathematica
    Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* Michael De Vlieger, Jun 22 2019 *)
  • PARI
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A060681(n) = (n-A032742(n));
    A318505(n) = if(1==n,0,(sigma(n)-A032742(n))-n);
    isA326064(n) = if((n%2)&&(2!=isprimepower(n)), my(s=A032742(n), t=sigma(n)-s); (gcd(t-n, n-A032742(n)) == t-n), 0);

Extensions

More terms from Amiram Eldar, Dec 24 2020
Showing 1-2 of 2 results.