cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326076 Number of subsets of {1..n} containing all of their integer products <= n.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 44, 88, 152, 232, 444, 888, 1576, 3152, 6136, 11480, 17112, 34224, 63504, 127008, 232352, 442208, 876944, 1753888, 3138848, 4895328, 9739152, 18141840, 34044720, 68089440, 123846624, 247693248, 469397440, 924014144, 1845676384, 3469128224, 5182711584
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

The strict case is A326081.

Examples

			The a(0) = 1 through a(4) = 12 sets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {3}
           {1,2}  {3}      {4}
                  {1,2}    {1,3}
                  {1,3}    {1,4}
                  {2,3}    {2,4}
                  {1,2,3}  {3,4}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
The a(6) = 44 sets:
  {}  {1}  {1,3}  {1,2,4}  {1,2,4,5}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {3}  {1,4}  {1,3,4}  {1,2,4,6}  {1,2,4,5,6}
      {4}  {1,5}  {1,3,5}  {1,3,4,5}  {1,3,4,5,6}
      {5}  {1,6}  {1,3,6}  {1,3,4,6}  {2,3,4,5,6}
      {6}  {2,4}  {1,4,5}  {1,3,5,6}
           {3,4}  {1,4,6}  {1,4,5,6}
           {3,5}  {1,5,6}  {2,3,4,6}
           {3,6}  {2,4,5}  {2,4,5,6}
           {4,5}  {2,4,6}  {3,4,5,6}
           {4,6}  {3,4,5}
           {5,6}  {3,4,6}
                  {3,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Tuples[#,2],#<=n&]]&]],{n,0,10}]
  • PARI
    a(n)={
        my(lim=vector(n, k, sqrtint(k)));
        my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b, i) && bittest(b, k/i), return(0))); 1);
        my(recurse(k, b)=
          my(m=1);
          for(j=max(2*k, n\2+1), min(2*k+1, n), if(accept(b, j), m*=2));
          k++;
          m*if(k > n\2, 1, self()(k, b + (1<Andrew Howroyd, Aug 30 2019

Formula

a(n) = 2*A326114(n) for n > 0. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(30) from Andrew Howroyd, Aug 16 2019
Terms a(31) and beyond from Andrew Howroyd, Aug 30 2019