A326076 Number of subsets of {1..n} containing all of their integer products <= n.
1, 2, 4, 8, 12, 24, 44, 88, 152, 232, 444, 888, 1576, 3152, 6136, 11480, 17112, 34224, 63504, 127008, 232352, 442208, 876944, 1753888, 3138848, 4895328, 9739152, 18141840, 34044720, 68089440, 123846624, 247693248, 469397440, 924014144, 1845676384, 3469128224, 5182711584
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 12 sets: {} {} {} {} {} {1} {1} {1} {1} {2} {2} {3} {1,2} {3} {4} {1,2} {1,3} {1,3} {1,4} {2,3} {2,4} {1,2,3} {3,4} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4} The a(6) = 44 sets: {} {1} {1,3} {1,2,4} {1,2,4,5} {1,2,3,4,6} {1,2,3,4,5,6} {3} {1,4} {1,3,4} {1,2,4,6} {1,2,4,5,6} {4} {1,5} {1,3,5} {1,3,4,5} {1,3,4,5,6} {5} {1,6} {1,3,6} {1,3,4,6} {2,3,4,5,6} {6} {2,4} {1,4,5} {1,3,5,6} {3,4} {1,4,6} {1,4,5,6} {3,5} {1,5,6} {2,3,4,6} {3,6} {2,4,5} {2,4,5,6} {4,5} {2,4,6} {3,4,5,6} {4,6} {3,4,5} {5,6} {3,4,6} {3,5,6} {4,5,6}
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Tuples[#,2],#<=n&]]&]],{n,0,10}]
-
PARI
a(n)={ my(lim=vector(n, k, sqrtint(k))); my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b, i) && bittest(b, k/i), return(0))); 1); my(recurse(k, b)= my(m=1); for(j=max(2*k, n\2+1), min(2*k+1, n), if(accept(b, j), m*=2)); k++; m*if(k > n\2, 1, self()(k, b + (1<
Andrew Howroyd, Aug 30 2019
Formula
a(n) = 2*A326114(n) for n > 0. - Andrew Howroyd, Aug 30 2019
Extensions
a(16)-a(30) from Andrew Howroyd, Aug 16 2019
Terms a(31) and beyond from Andrew Howroyd, Aug 30 2019
Comments