A326078 Number of subsets of {2..n} containing all of their integer quotients > 1.
1, 1, 2, 4, 8, 16, 24, 48, 72, 144, 216, 432, 552, 1104, 1656, 2592, 3936, 7872, 10056, 20112, 26688, 42320, 63480, 126960, 154800, 309600, 464400, 737568, 992160, 1984320, 2450880, 4901760, 6292800, 10197312, 15295968, 26241696, 32947488, 65894976, 98842464, 161587872, 205842528
Offset: 0
Keywords
Examples
The a(6) = 24 subsets: {} {2} {2,3} {2,3,4} {2,3,4,5} {2,3,4,5,6} {3} {2,4} {2,3,5} {2,3,4,6} {4} {2,5} {2,3,6} {2,3,5,6} {5} {3,4} {2,4,5} {6} {3,5} {3,4,5} {4,5} {4,5,6} {4,6} {5,6}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]&]],{n,0,10}]
-
PARI
a(n)={ my(lim=vector(n, k, sqrtint(k))); my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b,i) != bittest(b,k/i), return(0))); 1); my(recurse(k, b)= my(m=1); for(j=max(2*k,n\2+1), min(2*k+1,n), if(accept(b,j), m*=2)); k++; m*if(k > n\2, 1, (self()(k, b) + if(accept(b, k), self()(k, b + (1<
Andrew Howroyd, Aug 30 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 30 2019
Comments