A326081 Number of subsets of {1..n} containing the product of any set of distinct elements whose product is <= n.
1, 2, 4, 8, 16, 32, 56, 112, 200, 400, 728, 1456, 2368, 4736, 8896, 16112, 30016, 60032, 105472, 210944, 366848, 679680, 1327232, 2654464, 4434176, 8868352, 17488640, 33118336, 60069248, 120138496, 206804224, 413608448, 759882880, 1461600128, 2909298496, 5319739328
Offset: 0
Keywords
Examples
The a(6) = 56 subsets: {} {1} {1,2} {1,2,4} {1,2,3,6} {1,2,3,4,6} {1,2,3,4,5,6} {2} {1,3} {1,2,5} {1,2,4,5} {1,2,3,5,6} {3} {1,4} {1,2,6} {1,2,4,6} {1,2,4,5,6} {4} {1,5} {1,3,4} {1,2,5,6} {1,3,4,5,6} {5} {1,6} {1,3,5} {1,3,4,5} {2,3,4,5,6} {6} {2,4} {1,3,6} {1,3,4,6} {2,5} {1,4,5} {1,3,5,6} {2,6} {1,4,6} {1,4,5,6} {3,4} {1,5,6} {2,3,4,6} {3,5} {2,3,6} {2,3,5,6} {3,6} {2,4,5} {2,4,5,6} {4,5} {2,4,6} {3,4,5,6} {4,6} {2,5,6} {5,6} {3,4,5} {3,4,6} {3,5,6} {4,5,6}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]
Formula
For n > 0, a(n) = 2 * A308542(n).
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 24 2019
Comments