A326116 Number of subsets of {2..n} containing no products of two or more distinct elements.
1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1232, 2464, 4592, 8296, 15920, 31840, 55952, 111904, 195712, 362336, 697360, 1394720, 2334112, 4668224, 9095392, 17225312, 31242784, 62485568, 106668608, 213337216, 392606528, 755131840, 1491146912, 2727555424, 4947175712
Offset: 1
Keywords
Examples
The a(6) = 28 subsets: {} {2} {2,3} {2,3,4} {2,3,4,5} {3} {2,4} {2,3,5} {2,4,5,6} {4} {2,5} {2,4,5} {3,4,5,6} {5} {2,6} {2,4,6} {6} {3,4} {2,5,6} {3,5} {3,4,5} {3,6} {3,4,6} {4,5} {3,5,6} {4,6} {4,5,6} {5,6}
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..47
- P. J. Cameron and P. Erdős, On the number of integers with various properties, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,10}]
-
PARI
a(n)={ my(recurse(k, ep)= if(k > n, 1, my(t = self()(k + 1, ep)); if(!bittest(ep,k), forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i)))); t += self()(k + 1, ep); ); t); ); recurse(2, 2); } \\ Andrew Howroyd, Aug 25 2019
Formula
For n > 0, a(n) = A326117(n) - 1.
Extensions
Terms a(21)-a(36) from Andrew Howroyd, Aug 25 2019
Comments