cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326121 Expansion of Sum_{k>=1} k^2 * x^(2*k) / (1 - k * x^k).

Original entry on oeis.org

0, 1, 1, 5, 1, 18, 1, 33, 28, 58, 1, 246, 1, 178, 369, 577, 1, 1539, 1, 2774, 2531, 2170, 1, 16706, 3126, 8362, 20413, 35366, 1, 116444, 1, 135425, 178479, 131362, 94933, 1110999, 1, 524650, 1596521, 2530946, 1, 7280892, 1, 8403734, 16364457, 8389138, 1, 78568322, 823544, 43420683
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[k^2 x^(2 k)/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (n/#)^# &, # > 1 &], {n, 1, 50}]
  • PARI
    a(n)={sumdiv(n, d, if(d > 1, (n/d)^d))} \\ Andrew Howroyd, Sep 10 2019

Formula

a(n) = Sum_{d|n, d>1} (n/d)^d = Sum_{d|n, d
a(p) = 1, where p is prime.
a(n) = A055225(n) - n.