cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326123 a(n) is the sum of all divisors of the first n odd numbers.

Original entry on oeis.org

1, 5, 11, 19, 32, 44, 58, 82, 100, 120, 152, 176, 207, 247, 277, 309, 357, 405, 443, 499, 541, 585, 663, 711, 768, 840, 894, 966, 1046, 1106, 1168, 1272, 1356, 1424, 1520, 1592, 1666, 1790, 1886, 1966, 2087, 2171, 2279, 2399, 2489, 2601, 2729, 2849, 2947, 3103, 3205, 3309, 3501, 3609, 3719
Offset: 1

Views

Author

Omar E. Pol, Jun 07 2019

Keywords

Comments

a(n)/A326124(n) converges to 3/5.
a(n) is also the total area of the terraces of the first n odd-indexed levels of the stepped pyramid described in A245092.

Examples

			For n = 3 the first three odd numbers are [1, 3, 5] and their divisors are [1], [1, 3], [1, 5] respectively, and the sum of these divisors is 1 + 1 + 3 + 1 + 5 = 11, so a(3) = 11.
		

Crossrefs

Partial sums of A008438.

Programs

  • Maple
    ListTools:-PartialSums(map(numtheory:-sigma, [seq(i,i=1..200,2)])); # Robert Israel, Jun 12 2019
  • Mathematica
    Accumulate@ DivisorSigma[1, Range[1, 109, 2]] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    terms(n) = my(s=0, i=0); for(k=0, n-1, if(i>=n, break); s+=sigma(2*k+1); print1(s, ", "); i++)
    /* Print initial 50 terms as follows: */
    terms(50) \\ Felix Fröhlich, Jun 08 2019
    
  • PARI
    a(n) = sum(k=1, 2*n-1, if (k%2, sigma(k))); \\ Michel Marcus, Jun 08 2019
    
  • Python
    from math import isqrt
    def A326123(n): return (-(s:=isqrt(r:=n<<1))**2*(s+1) + sum((q:=r//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) -(t:=isqrt(m:=n>>1))**2*(t+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))+3*((u:=isqrt(n))**2*(u+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,u+1))>>1) # Chai Wah Wu, Nov 01 2023

Formula

a(n) = A024916(2n) - A326124(n).
a(n) ~ Pi^2 * n^2 / 8. - Vaclav Kotesovec, Aug 18 2021