cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326065 Sum of divisors of the largest proper divisor of n: a(n) = sigma(A032742(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 7, 4, 6, 1, 12, 1, 8, 6, 15, 1, 13, 1, 18, 8, 12, 1, 28, 6, 14, 13, 24, 1, 24, 1, 31, 12, 18, 8, 39, 1, 20, 14, 42, 1, 32, 1, 36, 24, 24, 1, 60, 8, 31, 18, 42, 1, 40, 12, 56, 20, 30, 1, 72, 1, 32, 32, 63, 14, 48, 1, 54, 24, 48, 1, 91, 1, 38, 31, 60, 12, 56, 1, 90, 40, 42, 1, 96, 18, 44, 30, 84, 1, 78, 14
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(A032742(n)) = A000203(n) - A326066(n).
a(n) = A326135(n) * A000203(A020639(n)^(A067029(n)-1)).
Sum_{k=1..n} a(k) ~ (zeta(2)/2) * c * n^2, where c = Sum_{p prime} ((p/((p-1)^2*(p+1))) * Product_{primes q <= p} ((q-1)^2*(q+1)/q^3)) = 0.3076135997... . - Amiram Eldar, Dec 21 2024

A326066 a(n) = sigma(n) - sigma(A032742(n)), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 7, 8, 9, 12, 11, 16, 13, 16, 18, 16, 17, 26, 19, 24, 24, 24, 23, 32, 25, 28, 27, 32, 29, 48, 31, 32, 36, 36, 40, 52, 37, 40, 42, 48, 41, 64, 43, 48, 54, 48, 47, 64, 49, 62, 54, 56, 53, 80, 60, 64, 60, 60, 59, 96, 61, 64, 72, 64, 70, 96, 67, 72, 72, 96, 71, 104, 73, 76, 93, 80, 84, 112, 79, 96, 81, 84, 83
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Cf. A000203, A013661, A020639, A032742, A246655 (positions of fixed points), A247180, A326065, A326067, A326135, A326136.

Programs

  • Mathematica
    Join[{0},Table[DivisorSigma[1,n]-DivisorSigma[1,Divisors[n][[-2]]],{n,2,100}]] (* Harvey P. Dale, Jan 12 2022 *)
  • PARI
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A326065(n) = sigma(A032742(n));
    A326066(n) = (sigma(n) - sigma(A032742(n)));

Formula

a(n) = A000203(n) - A326065(n) = A000203(n) - A000203(A032742(n)).
a(1) = 0; for n > 1, if n is of the form p^k (p prime and exponent k >= 1), then a(n) = n, otherwise a(n) > n.
For terms in A247180, i.e., when n = A020639(n) * A032742(n), with the smallest prime factor A020639(n) unitary, a(n) = A020639(n) * A326065(n).
Sum_{k=1..n} a(k) ~ (zeta(2)/2) * (1 - c) * n^2, where c is defined in the corresponding formula in A326065. . - Amiram Eldar, Dec 21 2024

A326136 a(n) = sigma(n) - sigma(A028234(n)), where sigma is the sum of divisors of n, and A028234 gives n without any occurrence of its smallest prime factor.

Original entry on oeis.org

0, 2, 3, 6, 5, 8, 7, 14, 12, 12, 11, 24, 13, 16, 18, 30, 17, 26, 19, 36, 24, 24, 23, 56, 30, 28, 39, 48, 29, 48, 31, 62, 36, 36, 40, 78, 37, 40, 42, 84, 41, 64, 43, 72, 72, 48, 47, 120, 56, 62, 54, 84, 53, 80, 60, 112, 60, 60, 59, 144, 61, 64, 96, 126, 70, 96, 67, 108, 72, 96, 71, 182, 73, 76, 93, 120, 84, 112, 79, 180, 120, 84, 83
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2019

Keywords

Crossrefs

Programs

  • PARI
    A028234(n) = { my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); }; \\ From A028234
    A326136(n) = (sigma(n) - sigma(A028234(n)));

Formula

a(n) = A000203(n) - A000203(A028234(n)).
From Amiram Eldar, Dec 21 2024: (Start)
a(n) = A000203(n) - A326135(n).
Sum_{k=1..n} a(k) ~ (zeta(2)/2) * (1 - c) * n^2, where c is defined in the corresponding formula in A326135. (End)
Showing 1-3 of 3 results.