cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A326064 Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors.

Original entry on oeis.org

117, 775, 10309, 56347, 88723, 2896363, 9597529, 12326221, 12654079, 25774633, 29817121, 63455131, 105100903, 203822581, 261019543, 296765173, 422857021, 573332713, 782481673, 900952687, 1129152721, 3350861677, 3703086229, 7395290407, 9347001661, 9350506057
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Nineteen initial terms factored:
n a(n) factorization A060681(a(n))/A318505(a(n))
1: 117 = 3^2 * 13, (3)
2: 775 = 5^2 * 31, (10)
3: 10309 = 13^2 * 61, (39)
4: 56347 = 29^2 * 67, (58)
5: 88723 = 17^2 * 307, (136)
6: 2896363 = 41^2 * 1723, (820)
7: 9597529 = 73^2 * 1801, (1314)
8: 12326221 = 59^2 * 3541, (1711)
9: 12654079 = 113^2 * 991, (904)
10: 25774633 = 71^2 * 5113, (2485)
11: 29817121 = 97^2 * 3169, (2328)
12: 63455131 = 89^2 * 8011, (3916)
13: 105100903 = 101^2 * 10303, (5050)
14: 203822581 = 157^2 * 8269, (6123)
15: 261019543 = 349^2 * 2143, (2094)
16: 296765173 = 131^2 * 17293, (8515)
17: 422857021 = 233^2 * 7789, (6757)
18: 573332713 = 331^2 * 5233, (4965)
19: 782481673 = 167^2 * 28057, (13861).
Note how the quotient (in the rightmost column) seems always to be a multiple of non-unitary prime factor and less than the unitary prime factor.
For p, q prime, if p^2+p+1 = kq and k+1|p-1, then p^2*q is in this sequence. - Charlie Neder, Jun 09 2019

Crossrefs

Subsequence of A326063.

Programs

  • Mathematica
    Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* Michael De Vlieger, Jun 22 2019 *)
  • PARI
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A060681(n) = (n-A032742(n));
    A318505(n) = if(1==n,0,(sigma(n)-A032742(n))-n);
    isA326064(n) = if((n%2)&&(2!=isprimepower(n)), my(s=A032742(n), t=sigma(n)-s); (gcd(t-n, n-A032742(n)) == t-n), 0);

Extensions

More terms from Amiram Eldar, Dec 24 2020

A326131 Positive numbers n for which A000120(n) = k*A294898(n), with k < 0; numbers for which A326130(n) = sigma(n) - A005187(n).

Original entry on oeis.org

6, 28, 110, 496, 884, 8128, 18632, 85936, 116624, 15370304, 33550336, 73995392, 815634435, 3915380170, 5556840416, 6800695312, 8589869056
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

No further terms below 2^31.
See also comments in A326133.
The quotients A000120(k)/(sigma(k)-A005187(k)) for these terms are: 1, 1, 5, 1, 3, 1, 5, 9, 2, 2, 1, 2, 2. Ones occur at the positions of perfect numbers.
a(18) > 10^11. - Amiram Eldar, Jan 03 2021

Examples

			110 is "1101110" in binary, thus A000120(110) = 5. Sigma(110) = 216, while A005187(110) = 215, thus as 5 = 5*(216-215), 110 is included in this sequence.
		

Crossrefs

Intersection of A326132 and A326133, also of A326132 and A326138.
Cf. also A325981, A326141.

Programs

  • Mathematica
    q[n_] := Module[{bw = DigitCount[n, 2, 1], ab = DivisorSigma[1, n] - 2*n, sum}, (sum = ab + bw) > 0 && Divisible[bw, sum]]; Select[Range[10^5], q] (* Amiram Eldar, Jan 03 2021 *)
  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    isA326131(n) = { my(t=sigma(n)-A005187(n)); (gcd(hammingweight(n), t) == t); };

Extensions

a(14)-a(17) from Amiram Eldar, Jan 03 2021

A326137 Numbers with at least five distinct prime factors that satisfy Euler's criterion (A228058) for odd perfect numbers.

Original entry on oeis.org

17342325, 22678425, 31674825, 38686725, 41420925, 45090045, 49358925, 51740325, 54033525, 54695025, 67660425, 68939325, 70703325, 75818925, 76392225, 77106645, 78217425, 81375525, 92400525, 96316605, 97383825, 98750925, 99147825, 102284325, 107694405, 113656725, 115420725, 117890325, 118728225, 120536325, 127766925
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2019

Keywords

Comments

P. P. Nielsen's 2006 paper shows that any odd perfect number must have at least nine distinct prime factors, thus if such numbers exist at all, they must occur in this sequence.
I conjecture that it is eventually possible to find an easy proof that this sequence has no common terms with A325981, and/or several other sequences (A326064, A326074, A326141, A326148, etc.) listed under index entry "sequences where odd perfect numbers must occur", thus settling the question about the existence of such numbers.

Crossrefs

Programs

  • PARI
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    isA326137(n) = ((omega(n)>=5)&&isA228058(n));

A329640 Numbers n for which A329639(n) is equal to gcd(A329638(n), A329639(n)).

Original entry on oeis.org

1, 9, 18, 27, 45, 54, 70, 75, 84, 125, 135, 144, 153, 198, 279, 366, 390, 392, 423, 459, 747, 837, 855, 858, 891, 927, 1269, 1341, 1494, 1503, 1690, 1899, 2097, 2241, 2493, 2604, 2679, 2763, 2781, 2888, 2979, 2988, 3177, 3411, 3507, 3879, 4023, 4041, 4050, 4482, 4491, 4509, 4707, 5067, 5283, 5463, 5679, 5697, 5817, 5877, 5982, 6093
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

After the initial 1, numbers n such that A329638(n) is a multiple of A329639(n).

Crossrefs

Cf. A324201 (a subsequence).
Cf. also A326141.

Programs

Showing 1-5 of 5 results.